Processing of Model Parameters

Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see support list of insight; Lüdecke, Waggoner & Makowski (2019) ), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).


Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


0.13.0 by Daniel Lüdecke, 9 days ago

Report a bug at

Browse source code at

Authors: Daniel Lüdecke [aut, cre] , @strengejacke) , Dominique Makowski [aut] , Mattan S. Ben-Shachar [aut] , Indrajeet Patil [aut] , @patilindrajeets) , Søren Højsgaard [aut] , Zen J. Lau [ctb] , Vincent Arel-Bundock [ctb] , @vincentab) , Jeffrey Girard [ctb] , @jeffreymgirard)

Documentation:   PDF Manual  

Task views: Probability Distributions

GPL-3 license

Imports bayestestR, insight, methods, stats, utils

Suggests AER, afex, aod, BayesFactor, BayesFM, bbmle, betareg, blme, boot, brglm2, brms, broom, cAIC4, car, cgam, clubSandwich, cluster, cplm, dplyr, DRR, effectsize, emmeans, EGAnet, FactoMineR, fastICA, gam, gamlss, gee, geepack, ggplot2, GLMMadaptive, glmmTMB, GPArotation, gt, lavaan, lavaSearch2, lme4, lmerTest, logspline, lqmm, knitr, MASS, magrittr, Matrix, mclust, MCMCglmm, mediation, metaBMA, metafor, mice, mfx, mgcv, multcomp, multimode, MuMIn, M3C, NbClust, nFactors, nlme, panelr, performance, plm, PMCMRplus, pbkrtest, projpred, pscl, psych, quantreg, randomForest, rmarkdown, rstanarm, sandwich, see, sjstats, spelling, survey, survival, testthat, TMB, tripack, truncreg, VGAM, WRS2

Imported by broomExtra, correlation, effectsize, ggstatsplot, glmglrt, groupedstats, modelbased, modelsummary, pairwiseComparisons, psycho, report, see, sjPlot, sjstats, statsExpressions, tidyBF.

Suggested by bayestestR, broom.helpers, gtsummary, insight, performance.

See at CRAN