All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

V8 — 4.2.1

Embedded JavaScript and WebAssembly Engine for R

vacuum — 0.1.0

Tukey's Vacuum Cleaner

vader — 0.2.1

Valence Aware Dictionary and sEntiment Reasoner (VADER)

vaersNDvax — 1.0.4

Non-Domestic Vaccine Adverse Event Reporting System (VAERS) Vaccine Data for Present

vaersvax — 1.0.5

US Vaccine Adverse Event Reporting System (VAERS) Vaccine Data for Present

vagalumeR — 0.1.6

Access to the 'Vagalume' API

vagam — 1.1

Variational Approximations for Generalized Additive Models

VAJointSurv — 0.1.0

Variational Approximation for Joint Survival and Marker Models

valaddin — 1.0.1

Functional Input Validation

valection — 1.0.0

Sampler for Verification Studies

VALERIE — 1.1.0

Visualising Splicing at Single-Cell Resolution

valet — 0.9.0

Provide R Client to the Bank of Canada's Valet API

valhallr — 0.1.0

A Tidy Interface to the 'Valhalla' Routing Engine

validann — 1.2.1

Validation Tools for Artificial Neural Networks

validata — 0.1.0

Validate Data Frames

validate — 1.1.1

Data Validation Infrastructure

validatedb — 0.1.4

Validate Data in a Database using 'validate'

validateRS — 1.0.0

One-Sided Multivariate Testing Procedures for Rating Systems

validatetools — 0.5.0

Checking and Simplifying Validation Rule Sets

valmetrics — 1.0.0

Metrics and Plots for Model Evaluation

valorate — 1.0-1

Velocity and Accuracy of the LOg-RAnk TEst

valottery — 0.0.1

Results from the Virginia Lottery Draw Games

valr — 0.6.5

Genome Interval Arithmetic

valse — 0.1-0

Variable Selection with Mixture of Models

valueEQ5D — 0.7.2

Scoring EQ-5d Descriptive System

valuemap — 2.0.0

Making Choropleth Map

VAM — 1.0.0

Variance-Adjusted Mahalanobis

vamc — 0.2.1

A Monte Carlo Valuation Framework for Variable Annuities

vampyr — 1.1.1

Factor Analysis Controlling the Effects of Response Bias

VancouvR — 0.1.7

Access the 'City of Vancouver' Open Data API

vandalico — 0.0.1

Evaluation of Presence-Absence Models

vanddraabe — 1.1.1

Identification and Statistical Analysis of Conserved Waters Near Proteins

vangogh — 0.1.1

A Vincent Van Gogh Color Palette Generator

vannstats — 1.2.7.14

Simplified Statistics for PA 606

vanquish — 1.0.0

Variant Quality Investigation Helper

VAR.etp — 1.0

VAR Modelling: Estimation, Testing, and Prediction

varband — 0.9.0

Variable Banding of Large Precision Matrices

varbin — 0.2.1

Optimal Binning of Continuous and Categorical Variables

varbvs — 2.5-16

Large-Scale Bayesian Variable Selection Using Variational Methods

varclust — 0.9.4

Variables Clustering

VARDetect — 0.1.6

Multiple Change Point Detection in Structural VAR Models

vardiag — 0.2-1

Variogram Diagnostics

vardpoor — 0.20.1

Variance Estimation for Sample Surveys by the Ultimate Cluster Method

VarED — 1.0.0

Variance Estimation using Difference-Based Methods

VaRES — 1.0.1

Computes Value at Risk and Expected Shortfall for over 100 Parametric Distributions

varEst — 0.1.0

Variance Estimation

VarfromPDB — 2.2.10

Disease-Gene-Variant Relations Mining from the Public Databases and Literature

varhandle — 2.0.5

Functions for Robust Variable Handling

variability — 0.1.0

Genetic Variability Analysis for Plant Breeding Research

variables — 1.1-1

Variable Descriptions

VariableScreening — 0.2.1

High-Dimensional Screening for Semiparametric Longitudinal Regression

varian — 0.2.2

Variability Analysis in R

VarianceGamma — 0.4-0

The Variance Gamma Distribution

variantspark — 0.1.1

A 'Sparklyr' Extension for 'VariantSpark'

varImp — 0.4

RF Variable Importance for Arbitrary Measures

variosig — 0.3-1

Testing Spatial Dependence Using Empirical Variogram

varitas — 0.0.2

Variant Calling in Targeted Analysis Sequencing Data

varjmcm — 0.1.1

Estimations for the Covariance of Estimated Parameters in Joint Mean-Covariance Models

VARMER — 1.0.0

Variational Merging

VarRedOpt — 0.1.0

A Framework for Variance Reduction

VarReg — 1.0.2

Semi-Parametric Variance Regression

vars — 1.5-6

VAR Modelling

varSel — 0.2

Sequential Forward Floating Selection using Jeffries-Matusita Distance

VARSELECTEXPOSURE — 1.0.1

Variable Selection Methods Including an Exposure Variable

VarSelLCM — 2.1.3.1

Variable Selection for Model-Based Clustering of Mixed-Type Data Set with Missing Values

varSelRF — 0.7-8

Variable Selection using Random Forests

varsExplore — 0.3.0

Searchable Variable Explorer with Labelled Variables

VARshrink — 0.3.1

Shrinkage Estimation Methods for Vector Autoregressive Models

varTestnlme — 1.3.1

Variance Components Testing for Linear and Nonlinear Mixed Effects Models

VARtests — 2.0.5

Tests for Error Autocorrelation, ARCH Errors, and Cointegration in Vector Autoregressive Models

varycoef — 0.3.4

Modeling Spatially Varying Coefficients

vasicek — 0.0.3

Miscellaneous Functions for Vasicek Distribution

vasicekreg — 1.0.1

Regression Modeling Using Vasicek Distribution

vaultr — 1.1.1

Vault Client for Secrets and Sensitive Data

VBLPCM — 2.4.8

Variational Bayes Latent Position Cluster Model for Networks

VBsparsePCA — 0.1.0

The Variational Bayesian Method for Sparse PCA

VC2copula — 0.1.2

Extend the 'copula' Package with Families and Models from 'VineCopula'

VCA — 1.4.5

Variance Component Analysis

vccp — 0.1.1

Vine Copula Change Point Detection in Multivariate Time Series

vcd — 1.4-10

Visualizing Categorical Data

vcdExtra — 0.8-0

'vcd' Extensions and Additions

vcfR — 1.13.0

Manipulate and Visualize VCF Data

vcmeta — 1.1.0

Varying Coefficient Meta-Analysis

vcov — 0.0.1

Variance-Covariance Matrices and Standard Errors

vcpen — 1.9

Penalized Variance Components Analysis

vcr — 1.0.2

Record 'HTTP' Calls to Disk

vctrs — 0.4.2

Vector Helpers

vcvComp — 1.0.2

Comparison of Variance - Covariance Patterns

VDAP — 2.0.0

Peptide Array Analysis Tools

vdar — 0.1.3-2

Discriminant Analysis Incorporating Individual Uncertainties

vdg — 1.2.2

Variance Dispersion Graphs and Fraction of Design Space Plots

vdiffr — 1.0.4

Visual Regression Testing and Graphical Diffing

VDJgermlines — 0.1

Variable, Diversity and Joining Sequences from Various Species

vdra — 1.0.0

Vertical Distributed Regression Analysis

VDSM — 0.1.1

Visualization of Distribution of Selected Model

VDSPCalibration — 1.0

Statistical Methods for Designing and Analyzing a Calibration Study

vec2dtransf — 1.1.2

2D Cartesian Coordinate Transformation

veccompare — 0.1.0

Perform Set Operations on Vectors, Automatically Generating All n-Wise Comparisons, and Create Markdown Output

vecsets — 1.3

Like Set Tools in 'Base' Package but Keeps Duplicate Elements

VecStatGraphs2D — 1.8

Vector Analysis using Graphical and Analytical Methods in 2D

Next page