All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

scales — 1.3.0

Scale Functions for Visualization

ScaleSpikeSlab — 1.0

Scalable Spike-and-Slab

scalpel — 1.0.3

Processes Calcium Imaging Data

scalreg — 1.0.1

Scaled Sparse Linear Regression

scam — 1.2-17

Shape Constrained Additive Models

scan — 0.61.0

Single-Case Data Analyses for Single and Multiple Baseline Designs

scAnnotate — 0.3

An Automated Cell Type Annotation Tool for Single-Cell RNA-Sequencing Data

scanstatistics — 1.1.1

Space-Time Anomaly Detection using Scan Statistics

scape — 2.3.5

Statistical Catch-at-Age Plotting Environment

scaper — 0.1.0

Single Cell Transcriptomics-Level Cytokine Activity Prediction and Estimation

scapesClassification — 1.0.0

User-Defined Classification of Raster Surfaces

scapGNN — 0.1.4

Graph Neural Network-Based Framework for Single Cell Active Pathways and Gene Modules Analysis

scar — 0.2-2

Shape-Constrained Additive Regression: a Maximum Likelihood Approach

scaRabee — 1.1-4

Optimization Toolkit for Pharmacokinetic-Pharmacodynamic Models

scatr — 1.0.1

Create Scatter Plots with Marginal Density or Box Plots

scatterD3 — 1.0.1

D3 JavaScript Scatterplot from R

ScatterDensity — 0.0.4

Density Estimation and Visualization of 2D Scatter Plots

scattermore — 1.2

Scatterplots with More Points

scatterpie — 0.2.4

Scatter Pie Plot

scatterplot3d — 0.3-44

3D Scatter Plot

scatterPlotMatrix — 0.3.0

`htmlwidget` for a Scatter Plot Matrix

SCBiclust — 1.0.1

Identifies Mean, Variance, and Hierarchically Clustered Biclusters

scBio — 0.1.6

Single Cell Genomics for Enhancing Cell Composition Inference from Bulk Genomics Data

SCBmeanfd — 1.2.2

Simultaneous Confidence Bands for the Mean of Functional Data

scBSP — 1.0.0

A Fast Tool for Single-Cell Spatially Variable Genes Identifications on Large-Scale Data

scbursts — 1.6

Single Channel Bursts Analysis

scCAN — 1.0.5

Single-Cell Clustering using Autoencoder and Network Fusion

scCATCH — 3.2.2

Single Cell Cluster-Based Annotation Toolkit for Cellular Heterogeneity

sccca — 0.1.1

Single-Cell Correlation Based Cell Type Annotation

SCCI — 1.2

Stochastic Complexity-Based Conditional Independence Test for Discrete Data

scclust — 0.2.5

Size-Constrained Clustering

sccore — 1.0.5

Core Utilities for Single-Cell RNA-Seq

sccr — 2.1

The Self-Consistent, Competing Risks (SC-CR) Algorithms

SCCS — 1.7

The Self-Controlled Case Series Method

scCustomize — 2.1.2

Custom Visualizations & Functions for Streamlined Analyses of Single Cell Sequencing

SCDA — 0.0.2

Spatially-Clustered Data Analysis

SCDB — 0.4.1

Easily Access and Maintain Time-Based Versioned Data (Slowly-Changing-Dimension)

scDECO — 0.1.0

Estimating Dynamic Correlation

SCdeconR — 1.0.0

Deconvolution of Bulk RNA-Seq Data using Single-Cell RNA-Seq Data as Reference

scdensity — 1.0.3

Shape-Constrained Kernel Density Estimation

scDHA — 1.2.2

Single-Cell Decomposition using Hierarchical Autoencoder

scdhlm — 0.7.3

Estimating Hierarchical Linear Models for Single-Case Designs

scDiffCom — 1.0.0

Differential Analysis of Intercellular Communication from scRNA-Seq Data

scDIFtest — 0.1.1

Item-Wise Score-Based DIF Detection

scdtb — 0.2.0

Single Case Design Tools

scellpam — 1.4.6.2

Applying Partitioning Around Medoids to Single Cell Data with High Number of Cells

SCEM — 1.1.0

Splitting-Coalescence-Estimation Method

scenes — 0.1.0

Switch Between Alternative 'shiny' UIs

SCEnt — 0.0.1

Single Cell Entropy Analysis of Gene Heterogeneity in Cell Populations

SCEPtER — 0.2-4

Stellar CharactEristics Pisa Estimation gRid

SCEPtERbinary — 0.1-1

Stellar CharactEristics Pisa Estimation gRid for Binary Systems

SCFMonitor — 0.3.5

Clear Monitor and Graphing Software Processing Gaussian .log File

scGate — 1.6.2

Marker-Based Cell Type Purification for Single-Cell Sequencing Data

SCGLR — 3.0

Supervised Component Generalized Linear Regression

scGOclust — 0.2.1

Measuring Cell Type Similarity with Gene Ontology in Single-Cell RNA-Seq

scgwr — 0.1.2-21

Scalable Geographically Weighted Regression

sched — 1.0.3

Request Scheduler

schemr — 0.3.0

Convert Images to Usable Color Schemes

schoenberg — 2.0.3

Tools for 12-Tone Musical Composition

scholar — 0.2.4

Analyse Citation Data from Google Scholar

SchoolDataIT — 0.2.2

Retrieve, Harmonise and Map Open Data Regarding the Italian School System

schoolmath — 0.4.2

Functions and Datasets for Math Used in School

schoRsch — 1.11

Tools for Analyzing Factorial Experiments

schrute — 1.0.1

The Entire Transcript from the Office in Tidy Format

schtools — 0.4.1

Schloss Lab Tools for Reproducible Microbiome Research

schumaker — 1.2.1

Schumaker Shape-Preserving Spline

SCI — 1.0-2

Standardized Climate Indices Such as SPI, SRI or SPEI

SCIBER — 0.2.2

Single-Cell Integrator and Batch Effect Remover

scico — 1.5.0

Colour Palettes Based on the Scientific Colour-Maps

scicomptools — 1.1.0

Tools Developed by the NCEAS Scientific Computing Support Team

scidesignR — 1.0.0

Data Sets from Design and Analysis of Experiments and Observational Studies using R

scientific — 2024.2

Highly Customizable 'rmarkdown' Theme for Scientific Reporting

scientoText — 0.1

Text & Scientometric Analytics

scifigure — 0.2

Visualize 'Reproducibility' and 'Replicability' in a Comparison of Scientific Studies

scimo — 0.0.2

Extra Recipes Steps for Dealing with Omics Data

SCINA — 1.2.0

A Semi-Supervised Category Identification and Assignment Tool

scINSIGHT — 0.1.4

Interpretation of Heterogeneous Single-Cell Gene Expression Data

SCIntRuler — 0.99.6

Guiding the Integration of Multiple Single-Cell RNA-Seq Datasets

sciplot — 1.2-0

Scientific Graphing Functions for Factorial Designs

scipub — 1.2.3

Summarize Data for Scientific Publication

sciRmdTheme — 0.1

Upgraded 'Rmarkdown' Themes for Scientific Writing

scISR — 0.1.1

Single-Cell Imputation using Subspace Regression

scistreer — 1.2.0

Maximum-Likelihood Perfect Phylogeny Inference at Scale

scitb — 0.2.1

Provides Some Useful Functions for Making Statistical Tables

scITD — 1.0.4

Single-Cell Interpretable Tensor Decomposition

SciViews — 0.9-13.1

SciViews - Main package

scLink — 1.0.1

Inferring Functional Gene Co-Expression Networks from Single Cell Data

sclr — 0.3.1

Scaled Logistic Regression

sClust — 1.0

R Toolbox for Unsupervised Spectral Clustering

SCMA — 1.3.1

Single-Case Meta-Analysis

scMappR — 1.0.11

Single Cell Mapper

scModels — 1.0.4

Fitting Discrete Distribution Models to Count Data

scOntoMatch — 0.1.1

Aligning Ontology Annotation Across Single Cell Datasets with 'scOntoMatch'

scoper — 1.3.0

Spectral Clustering-Based Method for Identifying B Cell Clones

SCOPRO — 0.1.0

Score Projection Between in 'Vivo' and in 'Vitro' Datasets

SCOR — 1.1.2

Spherically Constrained Optimization Routine

score — 1.0.2

A Package to Score Behavioral Questionnaires

scorecard — 0.4.4

Credit Risk Scorecard

scorecardModelUtils — 0.0.1.0

Credit Scorecard Modelling Utils

scoredec — 0.1.2

S-Core Graph Decomposition

Next page