All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

contFracR — 1.2.1

Continued Fraction Generators and Evaluators

contingency — 0.0.10

Discrete Multivariate Probability Distributions

contingencytables — 3.0.1

Statistical Analysis of Contingency Tables

contoureR — 1.0.5

Contouring of Non-Regular Three-Dimensional Data

ContourFunctions — 0.1.2

Create Contour Plots from Data or a Function

contourPlot — 0.2.0

Plots x,y,z Co-Ordinates in a Contour Map

contrast — 0.24.2

A Collection of Contrast Methods

contrastable — 1.0.2

Consistent Contrast Coding for Factors

conTree — 0.3-1

Contrast Trees and Boosting

ContRespPP — 0.4.2

Predictive Probability for a Continuous Response with an ANOVA Structure

contribution — 0.2.2

A Tiny Contribution Table Generator Based on 'ggplot2'

control — 0.2.5

A Control Systems Toolbox

controlfunctionIV — 0.1.1

Control Function Methods with Possibly Invalid Instrumental Variables

controlTest — 1.1.0

Quantile Comparison for Two-Sample Right-Censored Survival Data

contsurvplot — 0.2.1

Visualize the Effect of a Continuous Variable on a Time-to-Event Outcome

contTimeCausal — 1.1

Continuous Time Causal Models

convdistr — 1.6.2

Convolute Probabilistic Distributions

ConvergenceClubs — 2.2.5

Finding Convergence Clubs

ConvergenceConcepts — 1.2.3

Seeing Convergence Concepts in Action

convergEU — 0.7.3.2

Monitoring Convergence of EU Countries

conversim — 0.1.0

Conversation Similarity Analysis

convertBCD — 1.0

Convert Decimal to Binary-Coded Decimal (BCD) Form and Vice Versa

convertbonds — 0.1.0

Use the Given Parameters to Calculate the European Option Value

convertid — 0.1.8

Convert Gene IDs Between Each Other and Fetch Annotations from Biomart

ConvertPar — 0.1

Estimating IRT Parameters via Machine Learning Algorithms

convertr — 0.1

Convert Between Units

convevol — 2.2.1

Analysis of Convergent Evolution

convey — 1.0.1

Income Concentration Analysis with Complex Survey Samples

Convolutioner — 0.1.0

Convolution of Data

convoSPAT — 1.2.7

Convolution-Based Nonstationary Spatial Modeling

cooccur — 1.3

Probabilistic Species Co-Occurrence Analysis in R

CooccurrenceAffinity — 1.0

Affinity in Co-Occurrence Data

cookiecutter — 0.1.0

Generate Project Files from a Template

cookiemonster — 0.0.3

Your Friendly Solution to Managing Browser Cookies

cookies — 0.2.3

Use Browser Cookies with 'shiny'

CoOL — 1.1.2

Causes of Outcome Learning

cooltools — 2.4

Practical Tools for Scientific Computations and Visualizations

coop — 0.6-3

Co-Operation: Fast Covariance, Correlation, and Cosine Similarity Operations

CoopGame — 0.2.2

Important Concepts of Cooperative Game Theory

CoordinateCleaner — 3.0.1

Automated Cleaning of Occurrence Records from Biological Collections

CooRTweet — 2.0.2

Coordinated Networks Detection on Social Media

copBasic — 2.2.6

General Bivariate Copula Theory and Many Utility Functions

copCAR — 2.0-4

Fitting the copCAR Regression Model for Discrete Areal Data

copcor — 2024.7-31

Correlates of Protection and Correlates of Risk Functions

CopCTS — 1.0.0

Copula-Based Semiparametric Analysis for Time Series Data with Detection Limits

cope — 0.2.3

Coverage Probability Excursion (CoPE) Sets

copent — 0.5

Estimating Copula Entropy and Transfer Entropy

CopernicusDEM — 1.0.4

Copernicus Digital Elevation Models

CopernicusMarine — 0.2.3

Search Download and Handle Data from Copernicus Marine Service Information

cophescan — 1.4.1

Adaptation of the Coloc Method for PheWAS

coppeCosenzaR — 0.1.3

COPPE-Cosenza Fuzzy Hierarchy Model

copre — 0.2.1

Tools for Nonparametric Martingale Posterior Sampling

cops — 1.12-1

Cluster Optimized Proximity Scaling

CopSens — 0.1.0

Copula-Based Sensitivity Analysis for Observational Causal Inference

copula — 1.1-4

Multivariate Dependence with Copulas

Copula.Markov — 2.9

Copula-Based Estimation and Statistical Process Control for Serially Correlated Time Series

Copula.Markov.survival — 1.0.0

Copula Markov Model with Dependent Censoring

Copula.surv — 1.7

Analysis of Bivariate Survival Data Based on Copulas

copulaboost — 0.1.0

Fitting Additive Copula Regression Models for Binary Outcome Regression

CopulaCenR — 1.2.4

Copula-Based Regression Models for Multivariate Censored Data

copulaData — 0.0-2

Data Sets for Copula Modeling

copulaedas — 1.4.3

Estimation of Distribution Algorithms Based on Copulas

CopulaGAMM — 0.4.1

Copula-Based Mixed Regression Models

CopulaInference — 0.5.0

Estimation and Goodness-of-Fit of Copula-Based Models with Arbitrary Distributions

copulareg — 0.1.0

Copula Regression

CopulaREMADA — 1.7.3

Copula Mixed Models for Multivariate Meta-Analysis of Diagnostic Test Accuracy Studies

copulaSim — 0.0.1

Virtual Patient Simulation by Copula Invariance Property

copyseparator — 1.2.0

Assembling Long Gene Copies from Short Read Data

COR — 0.1.0

The COR for Optimal Subset Selection in Distributed Estimation

cora — 0.1.0

Cora Data for Entity Resolution

coRanking — 0.2.5

Co-Ranking Matrix

corazon — 0.1.0

Apply 'colorffy' Color Gradients Within 'shiny' Elements

CorBin — 1.0.0

Generate High-Dimensional Binary Data with Correlation Structures

corbouli — 0.1.3

Corbae-Ouliaris Frequency Domain Filtering

corclass — 0.2.1

Correlational Class Analysis

cord — 0.1.1

Community Estimation in G-Models via CORD

cordillera — 1.0-3

Calculation of the OPTICS Cordillera

CORE — 3.2

Cores of Recurrent Events

coreCollection — 0.9.5

Core Collection

coreCT — 1.3.3

Programmatic Analysis of Sediment Cores Using Computed Tomography Imaging

corehunter — 3.2.3

Multi-Purpose Core Subset Selection

CORElearn — 1.57.3.1

Classification, Regression and Feature Evaluation

corels — 0.0.4

R Binding for the 'Certifiably Optimal RulE ListS (Corels)' Learner

CoreMicrobiomeR — 0.1.0

Identification of Core Microbiome

coreNLP — 0.4-3

Wrappers Around Stanford CoreNLP Tools

coreSim — 0.2.4

Core Functionality for Simulating Quantities of Interest from Generalised Linear Models

corHMM — 2.8

Hidden Markov Models of Character Evolution

corkscrew — 1.1

Preprocessor for Data Modeling

corlink — 1.0.0

Record Linkage, Incorporating Imputation for Missing Agreement Patterns, and Modeling Correlation Patterns Between Fields

CorMID — 0.2.1

Correct Mass Isotopologue Distribution Vectors

corncob — 0.4.1

Count Regression for Correlated Observations with the Beta-Binomial

CornerstoneR — 2.0.2

Collection of Scripts for Interface Between 'Cornerstone' and 'R'

cornet — 1.0.0

Penalised Regression for Dichotomised Outcomes

coro — 1.1.0

'Coroutines' for R

coroICA — 1.0.2

Confounding Robust Independent Component Analysis for Noisy and Grouped Data

corona — 0.3.0

Coronavirus ('Rona') Data Exploration

coronavirus — 0.4.1

The 2019 Novel Coronavirus COVID-19 (2019-nCoV) Dataset

corpcor — 1.6.10

Efficient Estimation of Covariance and (Partial) Correlation

corpmetrics — 1.0

Tools for Valuation, Financial Metrics and Modeling in Corporate Finance

corpora — 0.6

Statistics and Data Sets for Corpus Frequency Data

Next page