All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

seqminer — 9.7

Efficiently Read Sequence Data (VCF Format, BCF Format, METAL Format and BGEN Format) into R

seqmon — 2.5

Group Sequential Design Class for Clinical Trials

SeqNet — 1.1.3

Generate RNA-Seq Data from Gene-Gene Association Networks

seqSHP — 0.1.1

Building Sequences from SHP Waves

seqtest — 0.1-0

Sequential Triangular Test

seqtrie — 0.2.8

Radix Tree and Trie-Based String Distances

sequenceR — 1.0.1

A Simple Sequencer for Data Sonification

SequenceSpikeSlab — 1.0.1

Exact Bayesian Model Selection Methods for the Sparse Normal Sequence Model

Sequential — 4.3.4

Exact Sequential Analysis for Poisson and Binomial Data

SequentialDesign — 1.0

Observational Database Study Planning using Exact Sequential Analysis for Poisson and Binomial Data

sequoia — 2.11.2

Pedigree Inference from SNPs

sergeant — 0.9.1

Tools to Transform and Query Data with Apache Drill

serial — 3.0

The Serial Interface Package

seriation — 1.5.7

Infrastructure for Ordering Objects Using Seriation

serieslcb — 0.4.0

Lower Confidence Bounds for Binomial Series System

serosv — 1.0.1

Model Infectious Disease Parameters from Serosurveys

serp — 0.2.5

Smooth Effects on Response Penalty for CLM

serpstatr — 0.3.0

'Serpstat' API Wrapper

serrsBayes — 0.5-0

Bayesian Modelling of Raman Spectroscopy

servosphereR — 0.1.1

Analyze Data Generated from Syntech Servosphere Trials

servr — 0.32

A Simple HTTP Server to Serve Static Files or Dynamic Documents

sesem — 1.0.2

Spatially Explicit Structural Equation Modeling

SEset — 1.0.1

Computing Statistically-Equivalent Path Models

SESraster — 0.7.1

Raster Randomization for Null Hypothesis Testing

sessioninfo — 1.2.2

R Session Information

set — 1.2

Set Operation

setariaviridis — 0.1.0

Field-Collected Data of Green Foxtail

setartree — 0.2.1

SETAR-Tree - A Novel and Accurate Tree Algorithm for Global Time Series Forecasting

SetMethods — 4.0

Functions for Set-Theoretic Multi-Method Research and Advanced QCA

setRNG — 2024.2-1

Set (Normal) Random Number Generator and Seed

sets — 1.0-25

Sets, Generalized Sets, Customizable Sets and Intervals

SetTest — 0.3.0

Group Testing Procedures for Signal Detection and Goodness-of-Fit

settings — 0.2.7

Software Option Settings Manager for R

settingsSync — 3.0.2

'Rstudio' Addin to Sync Settings and Keymaps

Seurat — 5.2.0

Tools for Single Cell Genomics

SeuratObject — 5.0.2

Data Structures for Single Cell Data

sevenbridges2 — 0.2.0

The 'Seven Bridges Platform' API Client

sever — 0.0.7

Customise 'Shiny' Disconnected Screens and Error Messages

sewage — 0.2.5

A Light-Weight Data Pipelining Tool

sf — 1.0-19

Simple Features for R

sfadv — 1.0.1

Advanced Methods for Stochastic Frontier Analysis

sfaR — 1.0.1

Stochastic Frontier Analysis Routines

sfarrow — 0.4.1

Read/Write Simple Feature Objects ('sf') with 'Apache' 'Arrow'

sfc — 0.1.0

Substance Flow Computation

sfcentral — 0.1.0

Spatial Centrality and Dispersion Statistics

sfcr — 0.2.1

Simulate Stock-Flow Consistent Models

sfcurve — 1.0.0

2x2, 3x3 and Nxn Space-Filling Curves

sfd — 0.1.0

Space-Filling Design Library

sfdct — 0.3.0

Constrained Triangulation for Simple Features

sfdep — 0.2.5

Spatial Dependence for Simple Features

sffdr — 1.0.0

Surrogate Functional False Discovery Rates for Genome-Wide Association Studies

sFFLHD — 0.1.2

Sequential Full Factorial-Based Latin Hypercube Design

sfheaders — 0.4.4

Converts Between R Objects and Simple Feature Objects

sfhelper — 0.2.2.0

Repair Functions for 'sf' Package Objects

sfhotspot — 0.8.0

Hot-Spot Analysis with Simple Features

sfinx — 1.7.99

Straightforward Filtering Index for AP-MS Data Analysis (SFINX)

sfislands — 1.0.0

Streamlines the Process of Fitting Areal Spatial Models

SFM — 0.1.0

A Package for Analyzing Skew Factor Models

sfnetworks — 0.6.5

Tidy Geospatial Networks

sfo — 0.1.2

San Francisco International Airport Monthly Air Passengers

SFPL — 1.0.0

Sparse Fused Plackett-Luce

SFS — 0.1.4

Similarity-First Search Seriation Algorithm

SFSI — 1.4.1

Sparse Family and Selection Index

sfsmisc — 1.1-20

Utilities from 'Seminar fuer Statistik' ETH Zurich

sft — 2.2-1

Functions for Systems Factorial Technology Analysis of Data

sftime — 0.3.0

Classes and Methods for Simple Feature Objects that Have a Time Column

SFtools — 0.1.0

Space Filling Based Tools for Data Mining

sftrack — 0.5.4

Modern Classes for Tracking and Movement Data

sg — 0.2.0

'SendGrid' Email API Client

sgapi — 1.0.3

Aid Querying 'nomis' and 'Office for National Statistics Open Geography' APIs

sgat — 0.9

Extract Information from Google's "Popular Times"

SGB — 1.0.1.1

Simplicial Generalized Beta Regression

sGBJ — 0.1.0

Survival Extension of the Generalized Berk-Jones Test

sgboost — 0.1.3

Sparse-Group Boosting

sgd — 1.1.2

Stochastic Gradient Descent for Scalable Estimation

SGDinference — 0.1.0

Inference with Stochastic Gradient Descent

sgee — 0.6-0

Stagewise Generalized Estimating Equations

sgeostat — 1.0-27

An Object-Oriented Framework for Geostatistical Modeling in S+

SGL — 1.3

Fit a GLM (or Cox Model) with a Combination of Lasso and Group Lasso Regularization

sglasso — 1.2.6

Lasso Method for RCON(V,E) Models

sglg — 0.2.2

Fitting Semi-Parametric Generalized log-Gamma Regression Models

sglr — 0.8

Sequential Generalized Likelihood Ratio Decision Boundaries Proposed by Shih, Lai, Heyse and Chen (2010, <doi:10.1002/Sim.4036>)

sgmodel — 0.1.2

Solves a Generic Stochastic Growth Model with a Representative Agent

sGMRFmix — 0.3.0

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

sgo — 0.9.2

Simple Geographical Operations (with OSGB36)

sgof — 2.3.5

Multiple Hypothesis Testing

sgolay — 1.0.3

Efficient Savitzky-Golay Filtering

SGP — 2.2-0.0

Student Growth Percentiles & Percentile Growth Trajectories

SGPdata — 28.0-0.0

Exemplar Data Sets for Student Growth Percentiles (SGP) Analyses

sgPLS — 1.8

Sparse Group Partial Least Square Methods

SGPR — 0.1.2

Sparse Group Penalized Regression for Bi-Level Variable Selection

sgpv — 1.1.0

Calculate Second-Generation p-Values and Associated Measures

sgr — 1.3.1

Sample Generation by Replacement

sgraph — 1.1.0

Network Visualization Using 'sigma.js'

sgs — 0.3.2

Sparse-Group SLOPE: Adaptive Bi-Level Selection with FDR Control

sgsR — 1.4.5

Structurally Guided Sampling

sgstar — 0.1.2

Seasonal Generalized Space Time Autoregressive (S-GSTAR) Model

sgt — 2.0

Skewed Generalized T Distribution Tree

shades — 1.4.0

Simple Colour Manipulation

shadowr — 0.0.2

Selenium Plugin to Manage Multi Level Shadow Elements on Web Page

Next page