All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

scuba — 1.11-1

Diving Calculations and Decompression Models

scUtils — 0.1.0

Utility Functions for Single-Cell RNA Sequencing Data

scutr — 0.2.0

Balancing Multiclass Datasets for Classification Tasks

SCVA — 1.3.1

Single-Case Visual Analysis

sda — 1.3.8

Shrinkage Discriminant Analysis and CAT Score Variable Selection

SDaA — 0.1-5

Sampling: Design and Analysis

sdafilter — 1.0.0

Symmetrized Data Aggregation

sdam — 1.1.4

Social Dynamics and Complexity in the Ancient Mediterranean

sdamr — 0.2.0

Statistics: Data Analysis and Modelling

SDAR — 0.9-55

Stratigraphic Data Analysis

SDAResources — 0.1.1

Datasets and Functions for 'Sampling: Design and Analysis, 3rd Edition'

sdcHierarchies — 0.21.0

Create and (Interactively) Modify Nested Hierarchies

sdcLog — 0.5.0

Tools for Statistical Disclosure Control in Research Data Centers

sdcMicro — 5.7.8

Statistical Disclosure Control Methods for Anonymization of Data and Risk Estimation

SDCNway — 1.0.1

Tools to Evaluate Disclosure Risk

sdcSpatial — 0.5.2

Statistical Disclosure Control for Spatial Data

sdcTable — 0.32.6

Methods for Statistical Disclosure Control in Tabular Data

sde — 2.0.18

Simulation and Inference for Stochastic Differential Equations

SDEFSR — 0.7.22

Subgroup Discovery with Evolutionary Fuzzy Systems

sdetorus — 0.1.10

Statistical Tools for Toroidal Diffusions

SDGdetector — 2.7.3

Detect SDGs and Targets in Text

SDLfilter — 2.3.3

Filtering and Assessing the Sample Size of Tracking Data

sdm — 1.2-46

Species Distribution Modelling

sdmpredictors — 0.2.15

Species Distribution Modelling Predictor Datasets

sdmTMB — 0.6.0

Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'

SDMtune — 1.3.1

Species Distribution Model Selection

sdmvspecies — 0.3.2

Create Virtual Species for Species Distribution Modelling

SDPDmod — 0.0.5

Spatial Dynamic Panel Data Modeling

sdpdth — 0.2

M-Estimator for Threshold Spatial Dynamic Panel Data Model

sdPrior — 1.0-0

Scale-Dependent Hyperpriors in Structured Additive Distributional Regression

sdprisk — 1.1-6

Measures of Risk for the Compound Poisson Risk Process with Diffusion

SDPrism2D — 0.1.1

Visualizing the Standard Deviation as the Size of a Prism

sdrt — 1.0.0

Estimating the Sufficient Dimension Reduction Subspaces in Time Series

sdsfun — 0.5.0

Spatial Data Science Complementary Features

SDT — 1.0.0

Self-Determination Theory Measures

sdtm.oak — 0.1.1

SDTM Data Transformation Engine

sdtmchecks — 1.0.0

Data Quality Checks for Study Data Tabulation Model (SDTM) Datasets

sdtmval — 0.4.1

Validate SDTM Domains

sdwd — 1.0.5

Sparse Distance Weighted Discrimination

SE.EQ — 1.0

SE-Test for Equivalence

SEA — 2.0.1

Segregation Analysis

seacarb — 3.3.3

Seawater Carbonate Chemistry

SEAGLE — 1.0.1

Scalable Exact Algorithm for Large-Scale Set-Based Gene-Environment Interaction Tests

SEAHORS — 1.8.0

Spatial Exploration of ArcHaeological Objects in R Shiny

sealasso — 0.1-3

Standard Error Adjusted Adaptive Lasso

seAMLess — 0.1.1

A Single Cell Transcriptomics Based Deconvolution Pipeline for Leukemia

searcher — 0.0.7

Query Search Interfaces

SearchTrees — 0.5.5

Spatial Search Trees

SEARS — 0.1.0

Seamless Dose Escalation/Expansion with Adaptive Randomization Scheme

seas — 0.6-0

Seasonal Analysis and Graphics, Especially for Climatology

season — 0.3.15

Seasonal Analysis of Health Data

seasonal — 1.10.0

R Interface to X-13-ARIMA-SEATS

seasonalityPlot — 1.3.1

Seasonality Variation Plots of Stock Prices and Cryptocurrencies

seasonalview — 1.0.0

Graphical User Interface for Seasonal Adjustment

seastests — 0.15.4

Seasonality Tests

SeaVal — 1.2.0

Validation of Seasonal Weather Forecasts

seawaveQ — 2.0.2

SEAWAVE-Q Model

SeBR — 1.0.0

Semiparametric Bayesian Regression Analysis

SECFISH — 0.1.7

Disaggregate Variable Costs

SECP — 0.1.5

Statistical Estimation of Cluster Parameters

secr — 5.1.0

Spatially Explicit Capture-Recapture

secrdesign — 2.9.2

Sampling Design for Spatially Explicit Capture-Recapture

secret — 1.1.0

Share Sensitive Information in R Packages

secretbase — 1.0.3

Cryptographic Hash, Extendable-Output and Base64 Functions

secrettext — 0.1.0

Encrypt Text Using a Shifting Substitution Cipher

secrlinear — 1.2.4

Spatially Explicit Capture-Recapture for Linear Habitats

secsse — 3.1.0

Several Examined and Concealed States-Dependent Speciation and Extinction

sectorgap — 0.1.0

Consistent Economic Trend Cycle Decomposition

secure — 0.6

Sequential Co-Sparse Factor Regression

secuTrialR — 1.3.3

Handling of Data from the Clinical Data Management System 'secuTrial'

sedproxy — 0.7.5

Simulation of Sediment Archived Climate Proxy Records

see — 0.9.0

Model Visualisation Toolbox for 'easystats' and 'ggplot2'

seeclickfixr — 1.1.0

Access Data from the SeeClickFix Web API

seecolor — 0.2.0

View Colors Used in R Objects in the Console

SeedCalc — 1.0.0

Seed Germination and Seedling Growth Indexes

seedCCA — 3.1

Seeded Canonical Correlation Analysis

seededlda — 1.4.1

Seeded Sequential LDA for Topic Modeling

SeedImbibition — 0.1.0

Seed Imbibition Percentage

SeedMatchR — 1.1.1

Find Matches to Canonical SiRNA Seeds in Genomic Features

seedr — 0.3.0

Hydro and Thermal Time Seed Germination Models in R

seedreg — 1.0.3

Regression Analysis for Seed Germination as a Function of Temperature

seeds — 0.9.1

Estimate Hidden Inputs using the Dynamic Elastic Net

SeedVigorIndex — 0.1.0

Seed Vigor Index

seeker — 1.1.6

Simplified Fetching and Processing of Microarray and RNA-Seq Data

seer — 1.1.8

Feature-Based Forecast Model Selection

SEERaBomb — 2019.2

SEER and Atomic Bomb Survivor Data Analysis Tools

seewave — 2.2.3

Sound Analysis and Synthesis

segclust2d — 0.3.3

Bivariate Segmentation/Clustering Methods and Tools

SegCorr — 1.2

Detecting Correlated Genomic Regions

segen — 1.1.0

Sequence Generalization Through Similarity Network

SegEnvIneq — 1.2

Environmental Inequality Indices Based on Segregation Measures

segmag — 1.2.4

Determine Event Boundaries in Event Segmentation Experiments

segmented — 2.1-3

Regression Models with Break-Points / Change-Points Estimation (with Possibly Random Effects)

segmenTier — 0.1.2

Similarity-Based Segmentation of Multidimensional Signals

segmentr — 0.2.0

Segment Data With Maximum Likelihood

segmetric — 0.3.0

Metrics for Assessing Segmentation Accuracy for Geospatial Data

segMGarch — 1.2

Multiple Change-Point Detection for High-Dimensional GARCH Processes

segRDA — 1.0.2

Modeling Non-Continuous Linear Responses of Ecological Data

segregation — 1.1.0

Entropy-Based Segregation Indices

segregatr — 0.4.0

Segregation Analysis for Variant Interpretation

Next page