Seeded Canonical Correlation Analysis

Functions for dimension reduction through the seeded canonical correlation analysis are provided. A classical canonical correlation analysis (CCA) is one of useful statistical methods in multivariate data analysis, but it is limited in use due to the matrix inversion for large p small n data. To overcome this, a seeded CCA has been proposed in Im, Gang and Yoo (2015) . The seeded CCA is a two-step procedure. The sets of variables are initially reduced by successively projecting cov(X,Y) or cov(Y,X) onto cov(X) and cov(Y), respectively, without loss of information on canonical correlation analysis, following Cook, Li and Chiaromonte (2007) and Lee and Yoo (2014) . Then, the canonical correlation is finalized with the initially-reduced two sets of variables.


News

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("seedCCA")

1.0 by Jae Keun Yoo, 2 years ago


Browse source code at https://github.com/cran/seedCCA


Authors: Jae Keun Yoo , Bo-Young Kim


Documentation:   PDF Manual  


GPL (>= 2.0) license


Imports CCA, corpcor, stats, graphics


See at CRAN