All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

SIMEXBoost — 0.2.0

Boosting Method for High-Dimensional Error-Prone Data

simfam — 1.1.6

Simulate and Model Family Pedigrees with Structured Founders

simfinapi — 1.0.0

Accessing 'SimFin' Data

simfit — 0.1.0

Test Model Fit with Simulation

simFrame — 0.5.4

Simulation Framework

simglm — 0.8.9

Simulate Models Based on the Generalized Linear Model

simgof — 1.0.2

Simultaneous Goodness-of-Fits Tests

SimHaz — 0.1

Simulated Survival and Hazard Analysis for Time-Dependent Exposure

simhelpers — 0.3.0

Helper Functions for Simulation Studies

SIMICO — 0.2.0

Set-Based Inference for Multiple Interval-Censored Outcomes

simIDM — 0.1.0

Simulating Oncology Trials using an Illness-Death Model

SimilarityMeasures — 1.4

Trajectory Similarity Measures

Simile — 1.3.3

Interact with Simile Models

SimInf — 9.8.1

A Framework for Data-Driven Stochastic Disease Spread Simulations

simIReff — 1.0

Stochastic Simulation for Information Retrieval Evaluation: Effectiveness Scores

simitation — 0.0.7

Simplified Simulations

simITS — 0.1.1

Analysis via Simulation of Interrupted Time Series (ITS) Data

SimJoint — 0.3.12

Simulate Joint Distribution

simlandr — 0.3.1

Simulation-Based Landscape Construction for Dynamical Systems

SIMle — 0.1.0

Estimation and Inference for General Time Series Regression

simmer — 4.4.7

Discrete-Event Simulation for R

simmer.bricks — 0.2.2

Helper Methods for 'simmer' Trajectories

simmer.plot — 0.1.18

Plotting Methods for 'simmer'

simMetric — 0.1.1

Metrics (with Uncertainty) for Simulation Studies that Evaluate Statistical Methods

simml — 0.3.0

Single-Index Models with Multiple-Links

simMP — 0.17.3

Simulate Somatic Mutations in Cancer Genomes from Mutational Processes

simmr — 0.5.1.217

A Stable Isotope Mixing Model

SIMMS — 1.3.2

Subnetwork Integration for Multi-Modal Signatures

simMSM — 1.1.42

Simulation of Event Histories for Multi-State Models

SimMultiCorrData — 0.2.2

Simulation of Correlated Data with Multiple Variable Types

SimNPH — 0.5.5

Simulate Non-Proportional Hazards

simode — 1.2.2

Statistical Inference for Systems of Ordinary Differential Equations using Separable Integral-Matching

simodels — 0.2.0

Flexible Framework for Developing Spatial Interaction Models

simPH — 1.3.13

Simulate and Plot Estimates from Cox Proportional Hazards Models

simphony — 1.0.3

Simulating Large-Scale, Rhythmic Data

simplace — 5.1.2

Interface to Use the Modelling Framework 'SIMPLACE'

simplanonym — 0.1.0

Consistent Anonymisation Across Datasets

SIMPLE.REGRESSION — 0.1.9

OLS, Moderated, Logistic, and Count Regressions Made Simple

simpleboot — 1.1-8

Simple Bootstrap Routines

simpleCache — 0.4.2

Simply Caching R Objects

simplecolors — 0.1.2

Access Color Names Using a Standardized Nomenclature

simpleFDR — 1.1

Simple False Discovery Rate Calculation

simplegraph — 1.0.1

Simple Graph Data Types and Basic Algorithms

simplegraphdb — 2021.03.10

A Simple Graph Database

simpleMH — 0.1.1

Simple Metropolis-Hastings MCMC Algorithm

simpleMLP — 1.0.0

Simple Multilayer Perceptron Neural Network

simpleNeural — 0.1.3

An Easy to Use Multilayer Perceptron

simplePHENOTYPES — 1.3.0

Simulation of Pleiotropic, Linked and Epistatic Phenotypes

simpleRCache — 0.3.3

Simple R Cache

simplermarkdown — 0.0.6

Simple Engine for Generating Reports using R

simpleSetup — 0.1.0

Set Up R Source Code Files for Use on Multiple Machines

simpletex — 1.0.4

Mathematical Formulas and Character Recognition

simplexreg — 1.3

Regression Analysis of Proportional Data Using Simplex Distribution

simplextree — 1.0.1

Provides Tools for Working with General Simplicial Complexes

SimplicialCubature — 1.3

Integration of Functions Over Simplices

simplifyNet — 0.0.1

Network Sparsification

SimplyAgree — 0.2.0

Flexible and Robust Agreement and Reliability Analyses

SIMplyBee — 0.4.1

'AlphaSimR' Extension for Simulating Honeybee Populations and Breeding Programmes

simPop — 2.1.3

Simulation of Complex Synthetic Data Information

simpr — 0.2.6

Flexible 'Tidyverse'-Friendly Simulations

simputation — 0.2.8

Simple Imputation

simr — 1.0.7

Power Analysis for Generalised Linear Mixed Models by Simulation

SimRDS — 2.0.0

Simulation of Respondent Driven Samples

simrec — 1.0.1

Simulation of Recurrent Event Data for Non-Constant Baseline Hazard

SimReg — 3.4

Similarity Regression

simrel — 2.1.0

Simulation of Multivariate Linear Model Data

simRestore — 1.1.4

Simulate the Effect of Management Policies on Restoration Efforts

SiMRiv — 1.0.7

Simulating Multistate Movements in River/Heterogeneous Landscapes

sims — 0.0.4

Simulate Data from R or 'JAGS' Code

simsalapar — 1.0-12

Tools for Simulation Studies in Parallel

simsem — 0.5-16

SIMulated Structural Equation Modeling

SimSeq — 1.4.0

Nonparametric Simulation of RNA-Seq Data

simsl — 0.2.1

Single-Index Models with a Surface-Link

SimSST — 0.0.5.2

Simulated Stop Signal Task Data

simstandard — 0.6.3

Generate Standardized Data

simStateSpace — 1.2.3

Simulate Data from State Space Models

simstudy — 0.8.1

Simulation of Study Data

simsurv — 1.0.0

Simulate Survival Data

SimSurvey — 0.1.6

Test Surveys by Simulating Spatially-Correlated Populations

SimSurvNMarker — 0.1.3

Simulate Survival Time and Markers

simTargetCov — 1.0.1

Data Transformation or Simulation with Empirical Covariance Matrix

simtimer — 4.0.0

Datetimes as Integers for Discrete-Event Simulations

SimTimeVar — 1.0.0

Simulate Longitudinal Dataset with Time-Varying Correlated Covariates

simTool — 1.1.7

Conduct Simulation Studies with a Minimal Amount of Source Code

simtrait — 1.1.3

Simulate Complex Traits from Genotypes

simtrial — 0.4.2

Clinical Trial Simulation

simts — 0.2.2

Time Series Analysis Tools

simuclustfactor — 0.0.3

Simultaneous Clustering and Factorial Decomposition of Three-Way Datasets

simukde — 1.3.0

Simulation with Kernel Density Estimation

simulariatools — 2.5.1

Simularia Tools for the Analysis of Air Pollution Data

simulator — 0.2.5

An Engine for Running Simulations

simule — 1.3.0

A Constrained L1 Minimization Approach for Estimating Multiple Sparse Gaussian or Nonparanormal Graphical Models

simulMGF — 0.1.1

Simulate SNP Matrix, Phenotype and Genotypic Effects

SimVitD — 1.0.3

Simulation Tools for Planning Vitamin D Studies

sinaplot — 1.1.0

An Enhanced Chart for Simple and Truthful Representation of Single Observations over Multiple Classes

sinar — 0.1.0

Conditional Least Squared (CLS) Method for the Model SINAR(1,1)

sindyr — 0.2.4

Sparse Identification of Nonlinear Dynamics

sinew — 0.4.0

Package Development Documentation and Namespace Management

singcar — 0.1.5

Comparing Single Cases to Small Samples

SingleCaseES — 0.7.3

A Calculator for Single-Case Effect Sizes

Next page