All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

nlcv — 0.3.5

Nested Loop Cross Validation

nleqslv — 3.3.5

Solve Systems of Nonlinear Equations

nlgm — 1.0

Non Linear Growth Models

NlinTS — 1.4.5

Models for Non Linear Causality Detection in Time Series

nlist — 0.3.3

Lists of Numeric Atomic Objects

nlive — 0.6.0

Automated Estimation of Sigmoidal and Piecewise Linear Mixed Models

nlme — 3.1-166

Linear and Nonlinear Mixed Effects Models

nlmeU — 0.70-9

Datasets and Utility Functions Enhancing Functionality of 'nlme' Package

nlmeVPC — 2.6

Visual Model Checking for Nonlinear Mixed Effect Model

nlmixr2 — 3.0.1

Nonlinear Mixed Effects Models in Population PK/PD

nlmixr2data — 2.0.9

Nonlinear Mixed Effects Models in Population PK/PD, Data

nlmixr2est — 3.0.2

Nonlinear Mixed Effects Models in Population PK/PD, Estimation Routines

nlmixr2extra — 3.0.1

Nonlinear Mixed Effects Models in Population PK/PD, Extra Support Functions

nlmixr2lib — 0.3.0

A Model Library for 'nlmixr2'

nlmixr2plot — 3.0.0

Nonlinear Mixed Effects Models in Population PK/PD, Plot Functions

nlmixr2rpt — 0.2.0

Templated Word and PowerPoint Reporting of 'nlmixr2' Fitting Results

nlmm — 1.1.0

Generalized Laplace Mixed-Effects Models

nlmrt — 2016.3.2

Functions for Nonlinear Least Squares Solutions

nlMS — 1.1

Non-Linear Model Selection

nlnet — 1.4

Nonlinear Network, Clustering, and Variable Selection Based on DCOL

nlopt — 0.1.1

Call Optimization Solvers with .nl Files

nloptr — 2.1.1

R Interface to NLopt

NLP — 0.3-2

Natural Language Processing Infrastructure

NLPclient — 1.0

Stanford 'CoreNLP' Annotation Client

nlpred — 1.0.1

Estimators of Non-Linear Cross-Validated Risks Optimized for Small Samples

nlpsem — 0.3

Linear and Nonlinear Longitudinal Process in Structural Equation Modeling Framework

NLPutils — 0.0-5.1

Natural Language Processing Utilities

nlraa — 1.9.7

Nonlinear Regression for Agricultural Applications

nlreg — 1.2-2.2

Higher Order Inference for Nonlinear Heteroscedastic Models

NLRoot — 1.0

searching for the root of equation

nlrr — 0.1

Non-Linear Relative Risk Estimation and Plotting

nlrx — 0.4.5

Setup, Run and Analyze 'NetLogo' Model Simulations from 'R' via 'XML'

nls.multstart — 1.3.0

Robust Non-Linear Regression using AIC Scores

nls2 — 0.3-4

Non-Linear Regression with Brute Force

nlsem — 0.8-1

Fitting Structural Equation Mixture Models

nlshrink — 1.0.1

Non-Linear Shrinkage Estimation of Population Eigenvalues and Covariance Matrices

nlsic — 1.0.4

Non Linear Least Squares with Inequality Constraints

nlsMicrobio — 1.0-0

Nonlinear Regression in Predictive Microbiology

nlsmsn — 0.0-6

Fitting Nonlinear Models with Scale Mixture of Skew-Normal Distributions

nlsr — 2023.8.31

Functions for Nonlinear Least Squares Solutions - Updated 2022

nlstac — 0.2.0

An R Package for Fitting Separable Nonlinear Models

nlstools — 2.1-0

Tools for Nonlinear Regression Analysis

NlsyLinks — 2.2.2

Utilities and Kinship Information for Research with the NLSY

nlt — 2.2-1

A Nondecimated Lifting Transform for Signal Denoising

nltm — 1.4.5

Non-Linear Transformation Models

nlts — 1.0-2

Nonlinear Time Series Analysis

nLTT — 1.4.9

Calculate the NLTT Statistic

nlWaldTest — 1.1.3

Wald Test of Nonlinear Restrictions and Nonlinear CI

NMA — 1.4-3

Network Meta-Analysis Based on Multivariate Meta-Analysis Models

nmadb — 1.2.0

Network Meta-Analysis Database API

NMADiagT — 0.1.2

Network Meta-Analysis of Multiple Diagnostic Tests

nmaINLA — 1.1.0

Network Meta-Analysis using Integrated Nested Laplace Approximations

NMAoutlier — 0.1.18

Detecting Outliers in Network Meta-Analysis

nmaplateplot — 1.0.2

The Plate Plot for Network Meta-Analysis Results

nmarank — 0.3-0

Complex Hierarchy Questions in Network Meta-Analysis

nmathresh — 0.1.6

Thresholds and Invariant Intervals for Network Meta-Analysis

NMcalc — 0.0.4

Basic Calculations for PK/PD Modeling

NMdata — 0.1.8

Preparation, Checking and Post-Processing Data for PK/PD Modeling

NMF — 0.28

Algorithms and Framework for Nonnegative Matrix Factorization (NMF)

nmfbin — 0.2.1

Non-Negative Matrix Factorization for Binary Data

NMFN — 2.0.1

Non-Negative Matrix Factorization

NMI — 2.0

Normalized Mutual Information of Community Structure in Network

Nmisc — 0.3.7

Miscellaneous Functions Used at 'Numeract LLC'

Nmix — 2.0.5

Bayesian Inference on Univariate Normal Mixtures

nmixgof — 0.1.0

Goodness of Fit Checks for Binomial N-Mixture Models

NMMIPW — 0.1.0

Inverse Probability Weighting under Non-Monotone Missing

NMOF — 2.10-1

Numerical Methods and Optimization in Finance

NMRphasing — 1.0.5

Phase Error Correction and Baseline Correction for One Dimensional ('1D') 'NMR' Data

nmrrr — 1.0.0

Binning and Visualizing NMR Spectra in Environmental Samples

NMsim — 0.1.5

Seamless 'Nonmem' Simulation Platform

nmslibR — 1.0.7

Non Metric Space (Approximate) Library

NMTox — 0.1.0

Dose-Response Relationship Analysis of Nanomaterial Toxicity

NMVANOVA — 1.1.0

Novice Model Variation ANOVA

nmw — 0.1.5

Understanding Nonlinear Mixed Effects Modeling for Population Pharmacokinetics

nn2poly — 0.1.2

Neural Network Weights Transformation into Polynomial Coefficients

nna — 0.0.2.1

Nearest-Neighbor Analysis

NNbenchmark — 3.2.0

Datasets and Functions to Benchmark Neural Network Packages

nncc — 2.0.0

Nearest Neighbors Matching of Case-Control Data

nndiagram — 1.0.0

Generator of 'LaTeX' Code for Drawing Neural Network Diagrams with 'TikZ'

nnet — 7.3-19

Feed-Forward Neural Networks and Multinomial Log-Linear Models

nnfor — 0.9.9

Time Series Forecasting with Neural Networks

nnGarrote — 1.0.4

Non-Negative Garrote Estimation with Penalized Initial Estimators

nngeo — 0.4.8

k-Nearest Neighbor Join for Spatial Data

nnlasso — 0.3

Non-Negative Lasso and Elastic Net Penalized Generalized Linear Models

nnlib2Rcpp — 0.2.9

A Tool for Creating Custom Neural Networks in C++ and using Them in R

nnls — 1.6

The Lawson-Hanson Algorithm for Non-Negative Least Squares (NNLS)

NNMIS — 1.0.1

Nearest Neighbor Based Multiple Imputation for Survival Data with Missing Covariates

nnR — 0.1.0

Neural Networks Made Algebraic

NNS — 10.9.3

Nonlinear Nonparametric Statistics

nnspat — 0.1.2

Nearest Neighbor Methods for Spatial Patterns

nnt — 0.1.4

The Number Needed to Treat (NNT) for Survival Endpoint

NNTbiomarker — 0.29.11

Calculate Design Parameters for Biomarker Validation Studies

nnTensor — 1.3.0

Non-Negative Tensor Decomposition

nntmvn — 1.0.0

Draw Samples of Truncated Multivariate Normal Distributions

NO.PING.PONG — 0.1.8.7

Incorporating Previous Findings When Evaluating New Data

noaastormevents — 0.2.0

Explore NOAA Storm Events Database

noah — 0.1.0

Create Unique Pseudonymous Animal Names

NobBS — 1.0.0

Nowcasting by Bayesian Smoothing

noctua — 2.6.2

Connect to 'AWS Athena' using R 'AWS SDK' 'paws' ('DBI' Interface)

nodbi — 0.11.0

'NoSQL' Database Connector

Next page