All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

GreyModel — 0.1.0

Fitting and Forecasting of Grey Model

Greymodels — 2.0.1

Shiny App for Grey Forecasting Model

GreyZones — 0.0.5

Detection of Grey Zones in Two-Way Inter-Rater Agreement Tables

grf — 2.4.0

Generalized Random Forests

GrFA — 0.2.1

Group Factor Analysis

gridBase — 0.4-7

Integration of base and grid graphics

gridBezier — 1.1-1

Bezier Curves in 'grid'

GRIDCOPULA — 1.0.1

Bivariate Copula Functions Based on Regular Grid

gridDebug — 0.5-1

Debugging 'grid' Graphics

gridExtra — 2.3

Miscellaneous Functions for "Grid" Graphics

gridGeometry — 0.4-0

Polygon Geometry in 'grid'

gridGraphics — 0.5-1

Redraw Base Graphics Using 'grid' Graphics

gridGraphviz — 0.3-1

Drawing Graphs with 'grid'

GridOnClusters — 0.1.0.1

Cluster-Preserving Multivariate Joint Grid Discretization

gridOT — 1.0.1

Approximate Optimal Transport Between Two-Dimensional Grids

gridpattern — 1.2.2

'grid' Pattern Grobs

gridsampler — 0.6

A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies

gridstackeR — 0.1.0

Wrapper for 'gridstack.js'

gridSVG — 1.7-5

Export 'grid' Graphics as SVG

gridtext — 0.1.5

Improved Text Rendering Support for 'Grid' Graphics

gRim — 0.3.4

Graphical Interaction Models

grImport — 0.9-7

Importing Vector Graphics

grImport2 — 0.3-3

Importing 'SVG' Graphics

GrimR — 0.5

Calculate Optical Parameters from Spindle Stage Measurements

GRIN2 — 1.0

Genomic Random Interval (GRIN)

gripp — 0.2.20

General Inverse Problem Platform

grizbayr — 1.3.5

Bayesian Inference for A|B and Bandit Marketing Tests

grmsem — 1.1.0

Genetic-Relationship-Matrix Structural Equation Modelling (GRMSEM)

grnn — 0.1.0

General regression neural network

GRNNs — 0.1.0

General Regression Neural Networks Package

GROAN — 1.3.1

Genomic Regression Workbench

grobblR — 0.2.1

Creating Flexible, Reproducible 'PDF' Reports

groc — 1.0.10

Generalized Regression on Orthogonal Components

gromovlab — 0.8-3

Gromov-Hausdorff Type Distances for Labeled Metric Spaces

groqR — 0.0.1

A Coding Assistant using the Fast AI Inference 'Groq'

groundhog — 3.2.1

Version-Control for CRAN, GitHub, and GitLab Packages

GroupBN — 1.2.0

Inferring Group Bayesian Networks using Hierarchical Feature Clustering

GroupComparisons — 0.1.0

Paired/Unpaired Parametric/Non-Parametric Group Comparisons

groupdata2 — 2.0.5

Creating Groups from Data

groupedSurv — 1.0.5.1

Efficient Estimation of Grouped Survival Models Using the Exact Likelihood Function

Grouphmap — 1.0.0

'Grouphmap' is an Automated One-Step Common Analysis of Batch Expression Profile

groupICA — 0.1.1

Independent Component Analysis for Grouped Data

groupr — 0.1.2

Groups with Inapplicable Values

grouprar — 0.1.0

Group Response Adaptive Randomization for Clinical Trials

GroupSeq — 1.4.3

Group Sequential Design Probabilities - With Graphical User Interface

GroupTest — 1.0.1

Multiple Testing Procedure for Grouped Hypotheses

groupTesting — 1.3.0

Simulating and Modeling Group (Pooled) Testing Data

groupwalk — 0.1.2

Implement the Group Walk Algorithm

groupWQS — 0.0.3

Grouped Weighted Quantile Sum Regression

grove — 1.1.1

Wavelet Functional ANOVA Through Markov Groves

growfunctions — 0.16

Bayesian Non-Parametric Dependent Models for Time-Indexed Functional Data

growR — 1.3.0

Implementation of the Vegetation Model ModVege

growth — 1.1.1

Multivariate Normal and Elliptically-Contoured Repeated Measurements Models

growthcleanr — 2.2.0

Data Cleaner for Anthropometric Measurements

GrowthCurveME — 0.1.0

Mixed-Effects Modeling for Growth Data

growthcurver — 0.3.1

Simple Metrics to Summarize Growth Curves

growthmodels — 1.3.1

Nonlinear Growth Models

growthPheno — 3.1.10

Functional Analysis of Phenotypic Growth Data to Smooth and Extract Traits

growthrate — 1.3

Bayesian reconstruction of growth velocity

growthrates — 0.8.4

Estimate Growth Rates from Experimental Data

grpCox — 1.0.2

Penalized Cox Model for High-Dimensional Data with Grouped Predictors

grPipe — 0.1.0

Graphviz Pipeline Plot Based on Grids (grPipe: Graphviz Pipeline)

grplasso — 0.4-7

Fitting User-Specified Models with Group Lasso Penalty

grpnet — 0.6

Group Elastic Net Regularized GLMs and GAMs

grpreg — 3.5.0

Regularization Paths for Regression Models with Grouped Covariates

grpsel — 1.3.2

Group Subset Selection

grpseq — 1.0

Group Sequential Analysis of Clinical Trials

grpSLOPE — 0.3.3

Group Sorted L1 Penalized Estimation

GrpString — 0.3.2

Patterns and Statistical Differences Between Two Groups of Strings

grr — 0.9.5

Alternative Implementations of Base R Functions

GRS.test — 1.2

GRS Test for Portfolio Efficiency, Its Statistical Power Analysis, and Optimal Significance Level Calculation

GRShiny — 1.0.0

Graded Response Model

GRSxE — 1.0.1

Testing Gene-Environment Interactions Through Genetic Risk Scores

grt — 0.2.1

General Recognition Theory

GRTo — 1.3

Tools for the Analysis of Gutenberg-Richter Distributions of Earthquake Magnitudes

grwat — 0.0.4

River Hydrograph Separation and Analysis

GSA — 1.03.3

Gene Set Analysis

GSA.UN — 1.0.0

Global Sensitivity Analysis Tool

GSAfisherCombined — 1.0

Gene Set Analysis with Fisher Combined Method

gsalib — 2.2.1

Utility Functions for 'GATK'

gsaot — 0.1.0

Compute Global Sensitivity Analysis Indices Using Optimal Transport

GSAQ — 1.0

Gene Set Analysis with QTL

gsarima — 0.1-5

Two Functions for Generalized SARIMA Time Series Simulation

gsbDesign — 1.0-3

Group Sequential Bayes Design

gsbm — 0.2.2

Estimate Parameters in the Generalized SBM

gscaLCA — 0.0.5

Generalized Structure Component Analysis- Latent Class Analysis & Latent Class Regression

gscounts — 0.1-4

Group Sequential Designs with Negative Binomial Outcomes

gscramble — 1.0.1

Simulating Admixed Genotypes Without Replacement

GSD — 1.0.0

Graph Signal Decomposition

GSDA — 1.0

Gene Set Distance Analysis (GSDA)

gsDesign — 3.6.5

Group Sequential Design

gsDesign2 — 1.1.3

Group Sequential Design with Non-Constant Effect

GSE — 4.2-1

Robust Estimation in the Presence of Cellwise and Casewise Contamination and Missing Data

gsEasy — 1.5

Gene Set Enrichment Analysis in R

GseaVis — 0.0.5

Implement for 'GSEA' Enrichment Visualization

GSED — 2.6

Group Sequential Enrichment Design

gSeg — 1.0

Graph-Based Change-Point Detection (g-Segmentation)

GSelection — 0.1.0

Genomic Selection

GSEMA — 0.99.3

Gene Set Enrichment Meta-Analysis

gsheet — 0.4.6

Download Google Sheets Using Just the URL

Next page