Tidy, analyze, and plot directed acyclic graphs (DAGs). 'ggdag' is built on top of 'dagitty', an R package that uses the 'DAGitty' web tool (< http://dagitty.net>) for creating and analyzing DAGs. 'ggdag' makes it easy to tidy and plot 'dagitty' objects using 'ggplot2' and 'ggraph', as well as common analytic and graphical functions, such as determining adjustment sets and node relationships.
Tidy, analyze, and plot directed acyclic graphs (DAGs). ggdag
uses the
powerful dagitty
package to create and analyze structural causal
models and plot them using ggplot2
and ggraph
in a consistent and
easy manner.
You can install ggdag from GitHub with:
# install.packages("devtools")devtools::install_github("malcolmbarrett/ggdag")
ggdag
makes it easy to use dagitty
in the context of the tidyverse.
You can directly tidy dagitty
objects or use convenience functions to
create DAGs using a more R-like syntax:
library(ggdag)# example from the dagitty packagedag <- dagitty::dagitty( "dag {y <- x <- z1 <- v -> z2 -> yz1 <- w1 <-> w2 -> z2x <- w1 -> yx <- w2 -> yx [exposure]y [outcome]}")tidy_dag <- tidy_dagitty(dag)tidy_dag#> # A tibble: 13 x 8#> name x y direction to xend yend circular#> <chr> <dbl> <dbl> <fct> <chr> <dbl> <dbl> <lgl>#> 1 v 11.8 8.03 -> z1 10.4 7.77 FALSE#> 2 v 11.8 8.03 -> z2 12.1 6.66 FALSE#> 3 w1 10.2 6.85 -> x 9.95 6.28 FALSE#> 4 w1 10.2 6.85 -> y 11.1 6.39 FALSE#> 5 w1 10.2 6.85 -> z1 10.4 7.77 FALSE#> 6 w1 10.2 6.85 <-> w2 10.9 5.75 FALSE#> 7 w2 10.9 5.75 -> x 9.95 6.28 FALSE#> 8 w2 10.9 5.75 -> y 11.1 6.39 FALSE#> 9 w2 10.9 5.75 -> z2 12.1 6.66 FALSE#> 10 x 9.95 6.28 -> y 11.1 6.39 FALSE#> 11 z1 10.4 7.77 -> x 9.95 6.28 FALSE#> 12 z2 12.1 6.66 -> y 11.1 6.39 FALSE#> 13 y 11.1 6.39 <NA> <NA> NA NA FALSE# using more R-like syntax to create the same DAGtidy_ggdag <- dagify(y ~ x + z2 + w2 + w1,x ~ z1 + w1,z1 ~ w1 + v,z2 ~ w2 + v,w1 ~~ w2, # bidirected pathexposure = "x",outcome = "y") %>% tidy_dagitty()tidy_ggdag#> # A tibble: 12 x 8#> name x y direction to xend yend circular#> <chr> <dbl> <dbl> <fct> <chr> <dbl> <dbl> <lgl>#> 1 v 7.25 17.2 -> z1 7.59 18.5 FALSE#> 2 v 7.25 17.2 -> z2 8.57 16.8 FALSE#> 3 w1 9.03 18.7 -> x 8.35 19.3 FALSE#> 4 w1 9.03 18.7 -> y 8.93 18.0 FALSE#> 5 w1 9.03 18.7 -> z1 7.59 18.5 FALSE#> 6 w1 9.03 18.7 <-> w2 9.68 17.5 FALSE#> 7 w2 9.68 17.5 -> y 8.93 18.0 FALSE#> 8 w2 9.68 17.5 -> z2 8.57 16.8 FALSE#> 9 x 8.35 19.3 -> y 8.93 18.0 FALSE#> 10 z1 7.59 18.5 -> x 8.35 19.3 FALSE#> 11 z2 8.57 16.8 -> y 8.93 18.0 FALSE#> 12 y 8.93 18.0 <NA> <NA> NA NA FALSE
ggdag
also provides functionality for analyzing DAGs and plotting them
in ggplot2
:
ggdag(tidy_ggdag)
ggdag_adjustment_set(tidy_ggdag)
As well as geoms and other functions for plotting them directly in
ggplot2
:
dagify(m ~ x + y) %>%tidy_dagitty() %>%node_dconnected("x", "y", controlling_for = "m") %>%ggplot(aes(x = x, y = y, xend = xend, yend = yend, shape = adjusted, col = d_relationship)) +geom_dag_edges(aes(end_cap = ggraph::circle(10, "mm"))) +geom_dag_collider_edges() +geom_dag_node() +geom_dag_text(col = "white") +theme_dag() +scale_dag(expand_y = expand_scale(c(0.2, 0.2)))
And common structures of bias:
ggdag_equivalent_dags(confounder_triangle())
ggdag_butterfly_bias(edge_type = "diagonal")