All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

pcr — 1.2.2

Analyzing Real-Time Quantitative PCR Data

PCRA — 1.2

Companion to Portfolio Construction and Risk Analysis

PCS — 1.3

Calculate the Probability of Correct Selection (PCS)

pcse — 1.9.1.1

Panel-Corrected Standard Error Estimation in R

PCSinR — 0.1.0

Parallel Constraint Satisfaction Networks in R

pcsstools — 0.1.2

Tools for Regression Using Pre-Computed Summary Statistics

pcSteiner — 1.0.0.1

Convenient Tool for Solving the Prize-Collecting Steiner Tree Problem

pctax — 0.1.1

Professional Comprehensive Omics Data Analysis

pcts — 0.15.7

Periodically Correlated and Periodically Integrated Time Series

pcutils — 0.2.7

Some Useful Functions for Statistics and Visualization

pcv — 1.1.0

Procrustes Cross-Validation

pcvr — 1.1.1.0

Plant Phenotyping and Bayesian Statistics

pda — 1.2.7

Privacy-Preserving Distributed Algorithms

pdc — 1.0.3

Permutation Distribution Clustering

PDE — 1.4.10

Extract Tables and Sentences from PDFs with User Interface

pder — 1.0-2

Panel Data Econometrics with R

pdfCluster — 1.0-4

Cluster Analysis via Nonparametric Density Estimation

PDFEstimator — 4.5

Multivariate Nonparametric Probability Density Estimator

pdfetch — 0.3.2

Fetch Economic and Financial Time Series Data from Public Sources

pdfminer — 1.0

Read Portable Document Format (PDF) Files

pdfsearch — 0.3.0

Search Tools for PDF Files

pdftables — 0.1

Programmatic Conversion of PDF Tables

pdftools — 3.4.1

Text Extraction, Rendering and Converting of PDF Documents

pdi — 0.4.2

Phenotypic Index Measures for Oak Decline Severity

pdist — 1.2.1

Partitioned Distance Function

PDM — 0.1

Photogrammetric Distances Measurer

PDMIF — 0.1.0

Fits Heterogeneous Panel Data Models

pdmod — 1.0.1

Proximal/Distal Modeling Framework for Pavlovian Conditioning Phenomena

PDN — 0.1.0

Personalized Disease Network

pdp — 0.8.2

Partial Dependence Plots

PdPDB — 2.0.1

Pattern Discovery in PDB Structures of Metalloproteins

pdqr — 0.3.1

Work with Custom Distribution Functions

PDQutils — 0.1.6

PDQ Functions via Gram Charlier, Edgeworth, and Cornish Fisher Approximations

pdR — 1.9.3

Threshold Model and Unit Root Tests in Cross-Section and Time Series Data

PDSCE — 1.2.1

Positive Definite Sparse Covariance Estimators

PDShiny — 0.1.0

'Probability Distribution Shiny'

pdSpecEst — 1.2.4

An Analysis Toolbox for Hermitian Positive Definite Matrices

pdt — 0.0.2

Permutation Distancing Test

PDtoolkit — 1.2.0

Collection of Tools for PD Rating Model Development and Validation

PDXpower — 1.0.3

Time to Event Outcome in Experimental Designs of Pre-Clinical Studies

pdxTrees — 0.4.0

Data Package of Portland, Oregon Trees

pdynmc — 0.9.11

Moment Condition Based Estimation of Linear Dynamic Panel Data Models

peacesciencer — 1.1.0

Tools and Data for Quantitative Peace Science Research

PEACH — 0.1.1

Pareto Enrichment Analysis for Combining Heterogeneous Datasets

Peacock.test — 1.0

Two and Three Dimensional Kolmogorov-Smirnov Two-Sample Tests

peacots — 1.3.2

Periodogram Peaks in Correlated Time Series

PeakError — 2023.9.4

Compute the Label Error of Peak Calls

peakRAM — 1.0.2

Monitor the Total and Peak RAM Used by an Expression or Function

PeakSegDisk — 2024.10.1

Disk-Based Constrained Change-Point Detection

PeakSegDP — 2024.1.24

Dynamic Programming Algorithm for Peak Detection in ChIP-Seq Data

PeakSegJoint — 2024.10.1

Joint Peak Detection in Several ChIP-Seq Samples

PeakSegOptimal — 2024.10.1

Optimal Segmentation Subject to Up-Down Constraints

pearson7 — 1.0-3

Maximum Likelihood Inference for the Pearson VII Distribution with Shape Parameter 3/2

PearsonDS — 1.3.1

Pearson Distribution System

PearsonICA — 1.2-5

Independent Component Analysis using Score Functions from the Pearson System

pec — 2023.04.12

Prediction Error Curves for Risk Prediction Models in Survival Analysis

pecora — 0.1.1

Permutation Conditional Random Tests

pedalfast.data — 1.0.2

PEDALFAST Data

pedbp — 2.0.1

Pediatric Blood Pressure

pedbuildr — 0.3.0

Pedigree Reconstruction

pedFamilias — 0.2.4

Import and Export 'Familias' Files

pedgene — 3.9

Gene-Level Variant Association Tests for Pedigree Data

pedigree — 1.4.2

Pedigree Functions

pedigreemm — 0.3-5

Pedigree-Based Mixed-Effects Models

pedigreeTools — 0.3

Versatile Functions for Working with Pedigrees

pedMermaid — 1.0.2

Pedigree Mermaid Syntax

pedmut — 0.7.1

Mutation Models for Pedigree Likelihood Computations

pedometrics — 0.12.1

Miscellaneous Pedometric Tools

pedprobr — 0.9.4

Probability Computations on Pedigrees

pedquant — 0.2.4

Public Economic Data and Quantitative Analysis

pedSimulate — 1.4.3

Pedigree, Genetic Merit, Phenotype, and Genotype Simulation

pedsuite — 1.3.1

Easy Installation of the 'pedsuite' Packages for Pedigree Analysis

pedtools — 2.7.1

Creating and Working with Pedigrees and Marker Data

pedtricks — 0.4.2

Visualize, Summarize and Simulate Data from Pedigrees

peermodels — 0.10.3

Client-Side R API Wrapper for Peer Models Network Model Repository

PeerPerformance — 2.3.1

Luck-Corrected Peer Performance Analysis in R

pegas — 1.3

Population and Evolutionary Genetics Analysis System

PEGroupTesting — 1.0

Population Proportion Estimation using Group Testing

PEIMAN2 — 0.1.0

Post-Translational Modification Enrichment, Integration, and Matching Analysis

PEIP — 2.2-5

Geophysical Inverse Theory and Optimization

PEkit — 1.0.0.1000

Partition Exchangeability Toolkit

pell — 0.1.0

Data About Historic Pell Grant Distribution in the US

PELVIS — 2.0.4

Probabilistic Sex Estimate using Logistic Regression, Based on VISual Traits of the Human Os Coxae

pema — 0.1.3

Penalized Meta-Analysis

pempi — 1.0.0

Proportion Estimation with Marginal Proxy Information

pems.utils — 0.2.29.1

Portable Emissions (and Other Mobile) Measurement System Utilities

pemultinom — 0.1.0

L1-Penalized Multinomial Regression with Statistical Inference

penAFT — 0.3.0

Fit the Regularized Gehan Estimator with Elastic Net and Sparse Group Lasso Penalties

penalized — 0.9-52

L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model

penalizedcdf — 0.1.0

Estimate a Penalized Linear Model using the CDF Penalty Function

penalizedclr — 2.0.0

Integrative Penalized Conditional Logistic Regression

penalizedSVM — 1.1.4

Feature Selection SVM using Penalty Functions

penaltyLearning — 2024.9.3

Penalty Learning

pencal — 2.2.2

Penalized Regression Calibration (PRC) for the Dynamic Prediction of Survival

pencopulaCond — 0.2

Estimating Non-Simplified Vine Copulas Using Penalized Splines

PenCoxFrail — 2.0.0

Regularization in Cox Frailty Models

pendensity — 0.2.13

Density Estimation with a Penalized Mixture Approach

penfa — 0.1.1

Single- And Multiple-Group Penalized Factor Analysis

PenIC — 1.0.0

Semiparametric Regression Analysis of Interval-Censored Data using Penalized Splines

penMSM — 0.99

Estimating Regularized Multi-state Models Using L1 Penalties

Next page