Analyzing Real-Time Quantitative PCR Data

Calculates the amplification efficiency and curves from real-time quantitative PCR (Polymerase Chain Reaction) data. Estimates the relative expression from PCR data using the double delta CT and the standard curve methods Livak & Schmittgen (2001) . Tests for statistical significance using two-group tests and linear regression Yuan et al. (2006) .


Build Status Build status Build status Coverage Status CRAN version downloads

Overview

Quantitative real-time PCR is an imprtant technique in medical and biomedical applicaitons. The pcr package provides a unified interface for quality assessing, analyzing and testing qPCR data for statistical significance. The aim of this document is to describe the different methods and modes used to relatively quantify gene expression of qPCR and their implemenation in the pcr package.

Getting started

The pcr is available on CRAN. To install it, use:

# install package CRAN
install.packages('pcr')

The development version of the package can be obtained through:

# install package from github (under development)
devtools::install_github('MahShaaban/pcr')
# load required libraries
library(pcr)

The following chunck of code locates a dataset of CT values of two genes from 12 different samples and performs a quick analysis to obtain the expression of a target gene c-myc normalized by a control GAPDH in the Kidney samples relative to the brain samples. pcr_analyze provides differnt methods, the default one that is used here is 'delta_delta_ct' applies the popular Double Delta CT method.

# default mode delta_delta_ct
## locate and read raw ct data
fl <- system.file('extdata', 'ct1.csv', package = 'pcr')
ct1 <- readr::read_csv(fl)
 
## add grouping variable
group_var <- rep(c('brain', 'kidney'), each = 6)
 
# calculate all values and errors in one step
## mode == 'separate_tube' default
res <- pcr_analyze(ct1,
                   group_var = group_var,
                   reference_gene = 'GAPDH',
                   reference_group = 'brain')
  
res

The output of pcr_analyze is explained in the documnetation of the function ?pcr_analyze and the method it calls ?pcr_ddct. Briefly, the input includes the CT value of c-myc normalized to the control GAPDH, The calibrated value of c-myc in the kidney relative to the brain samples and the final relative_expression of c-myc. In addition, an error term and a lower and upper intervals are provided.

The previous analysis makes a few assumptions. One of which is a perfect amplification efficiency of the PCR reation. To assess the validity of this assumption, pcr_assess provides a method called efficiency. The input data.frame is the CT values of c-myc and GAPDH at different input amounts/dilutions.

## locate and read data
fl <- system.file('extdata', 'ct3.csv', package = 'pcr')
ct3 <- readr::read_csv(fl)
 
## make a vector of RNA amounts
amount <- rep(c(1, .5, .2, .1, .05, .02, .01), each = 3)
 
## calculate amplification efficiency
res <- pcr_assess(ct3,
                  amount = amount,
                  reference_gene = 'GAPDH',
                  method = 'efficiency')
res

In the case of using the Double Delta C_T, the assumption of the amplification efficiency is critical for the reliability of the model. In particulare, the slope and the R^2 of the line between the log input amount and Delta C_T or differnce between the CT value of the target c-myc and GAPDH. Typically, The slope should be very small (less than 0.01). The slope here is appropriate, so the assumption holds true.

Other analysis methods ?pcr_analyze

  • Delta CT method
  • Relative standard curve method

Testing statistical significance ?pcr_test

  • Two group testing t-test and wilcoxon test
  • Linear regression testing

Documnetation

browseVignettes("pcr")

Citation

citation("pcr")

PeerJ Article

For details about the methods and more examples, check out our PeerJ article.

News

cRegulome 0.0.0.9000

  • under development

pcr 1.0.1

  • available on CRAN

pcr 1.1.0

  • Added plotting option to pcr_analyze
  • Revised documentation and vignette

pcr 1.1.1

  • Change vignette to html

pcr 1.1.2

  • Remove dependency on broom

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("pcr")

1.1.2 by Mahmoud Ahmed, 7 months ago


https://github.com/MahShaaban/pcr


Report a bug at https://github.com/MahShaaban/pcr/issues


Browse source code at https://github.com/cran/pcr


Authors: Mahmoud Ahmed [aut, cre]


Documentation:   PDF Manual  


GPL-3 license


Imports devtools, magrittr, dplyr, tidyr, purrr, readr, ggplot2

Suggests testthat, knitr, rmarkdown, covr, cowplot


See at CRAN