All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

mefa4 — 0.3-11

Multivariate Data Handling with S4 Classes and Sparse Matrices

mefdind — 0.1

Imports Data from MoE Spain

MEFM — 0.1.1

Perform MEFM Estimation on Matrix Time Series

Mega2R — 1.1.0

Accessing and Processing a 'Mega2' Genetic Database

MEGENA — 1.3.7

Multiscale Clustering of Geometrical Network

meifly — 0.3.1

Interactive Model Exploration using 'GGobi'

mekko — 0.1.0

Variable Width Bar Charts: Bar Mekko

melt — 1.11.4

Multiple Empirical Likelihood Tests

meltr — 1.0.2

Read Non-Rectangular Text Data

meltt — 0.4.3

Matching Event Data by Location, Time and Type

mem — 2.18

The Moving Epidemic Method

memapp — 2.16

The Moving Epidemic Method Web Application

meme — 0.2.3

Create Meme

memery — 0.6.0

Internet Memes for Data Analysts

memgene — 1.0.2

Spatial Pattern Detection in Genetic Distance Data Using Moran's Eigenvector Maps

memify — 0.1.1

Constructing Functions That Keep State

memisc — 0.99.31.8.1

Management of Survey Data and Presentation of Analysis Results

memo — 1.1.1

In-Memory Caching of Repeated Computations (Memoization)

memochange — 1.1.1

Testing for Structural Breaks under Long Memory and Testing for Changes in Persistence

memofunc — 1.0.2

Function Memoization

memoiR — 1.2-10

R Markdown and Bookdown Templates to Publish Documents

memoise — 2.0.1

'Memoisation' of Functions

memor — 0.2.3

A 'rmarkdown' Template that Can be Highly Customized

memoria — 1.0.0

Quantifying Ecological Memory in Palaeoecological Datasets and Other Long Time-Series

MEMSS — 0.9-3

Data Sets from Mixed-Effects Models in S

memuse — 4.2-3

Memory Estimation Utilities

MendelianRandomization — 0.10.0

Mendelian Randomization Package

MEPDF — 3.0

Creation of Empirical Density Functions Based on Multivariate Data

Mercator — 1.1.5

Clustering and Visualizing Distance Matrices

merDeriv — 0.2-4

Case-Wise and Cluster-Wise Derivatives for Mixed Effects Models

mergedblocks — 1.1.1

Merged Block Randomization

mergen — 0.2.1

AI-Driven Code Generation, Explanation and Execution for Data Analysis

mergenstudio — 1.0

'Mergen' Studio: An 'RStudio' Addin Wrapper for the 'Mergen' Package

mergeTrees — 0.1.3

Aggregating Trees

mergingTools — 1.0.1

Tools to Merge Hardware Event Monitors (HEMs) Coming from Separate Subexperiments into One Single Dataframe

MERO — 0.1.2

Performing Monte Carlo Expectation Maximization Random Forest Imputation for Biological Data

merror — 3.0

Accuracy and Precision of Measurements

merTools — 0.6.2

Tools for Analyzing Mixed Effect Regression Models

meshed — 0.2.3

Bayesian Regression with Meshed Gaussian Processes

MESS — 0.5.12

Miscellaneous Esoteric Statistical Scripts

messaging — 0.1.0

Conveniently Issue Messages, Warnings, and Errors

messi — 0.1.1

Mediation Analysis with External Summary-Level Information on Total Effect

messy.cats — 1.0

Employs String Distance Tools to Help Clean Categorical Data

messydates — 0.4.1

A Flexible Class for Messy Dates

Mestim — 0.2.1

Computes the Variance-Covariance Matrix of Multidimensional Parameters Using M-Estimation

meta — 8.0-1

General Package for Meta-Analysis

meta.shrinkage — 0.1.4

Meta-Analyses for Simultaneously Estimating Individual Means

meta4diag — 2.1.1

Meta-Analysis for Diagnostic Test Studies

MetaAnalyser — 0.2.1

An Interactive Visualisation of Meta-Analysis as a Physical Weighing Machine

metabias — 0.1.1

Meta-Analysis for Within-Study and/or Across-Study Biases

metaBLUE — 1.0.0

BLUE for Combining Location and Scale Information in a Meta-Analysis

metaBMA — 0.6.9

Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis

metaboData — 0.6.3

Example Metabolomics Data Sets

MetabolAnalyze — 1.3

Probabilistic latent variable models for metabolomic data.

metabolic — 0.1.2

Datasets and Functions for Reproducing Meta-Analyses

MetabolicSurv — 1.1.2

A Biomarker Validation Approach for Classification and Predicting Survival Using Metabolomics Signature

MetabolicSyndrome — 0.1.3

Diagnosis of Metabolic Syndrome

MetabolomicsBasics — 1.4.5

Basic Functions to Investigate Metabolomics Data Matrices

MetaboQC — 1.1

Normalize Metabolomic Data using QC Signal

metabup — 0.1.3

Bayesian Meta-Analysis Using Basic Uncertain Pooling

metacart — 2.0-3

Meta-CART: A Flexible Approach to Identify Moderators in Meta-Analysis

metaCluster — 0.1.1

Metagenomic Clustering

metacom — 1.5.3

Analysis of the 'Elements of Metacommunity Structure'

MetaComp — 1.1.2

EDGE Taxonomy Assignments Visualization

metaconfoundr — 0.1.2

Visualize 'Confounder' Control in Meta-Analyses

metaConvert — 1.0.2

An Automatic Suite for Estimation of Various Effect Size Measures

metacore — 0.1.3

A Centralized Metadata Object Focus on Clinical Trial Data Programming Workflows

MetaCycle — 1.2.0

Evaluate Periodicity in Large Scale Data

metadat — 1.2-0

Meta-Analysis Datasets

metadeconfoundR — 1.0.2

Covariate-Sensitive Analysis of Cross-Sectional High-Dimensional Data

metaDigitise — 1.0.1

Extract and Summarise Data from Published Figures

metadynminer — 0.1.7

Tools to Read, Analyze and Visualize Metadynamics HILLS Files from 'Plumed'

metadynminer3d — 0.0.2

Tools to Read, Analyze and Visualize Metadynamics 3D HILLS Files from 'Plumed'

metaEnsembleR — 0.1.0

Automated Intuitive Package for Meta-Ensemble Learning

metafolio — 0.1.2

Metapopulation Simulations for Conserving Salmon Through Portfolio Optimization

metafor — 4.6-0

Meta-Analysis Package for R

metaforest — 0.1.4

Exploring Heterogeneity in Meta-Analysis using Random Forests

metafuse — 2.0-1

Fused Lasso Approach in Regression Coefficient Clustering

metagam — 0.4.0

Meta-Analysis of Generalized Additive Models

metaGE — 1.1.0

Meta-Analysis for Detecting Genotype x Environment Associations

metagear — 0.7

Comprehensive Research Synthesis Tools for Systematic Reviews and Meta-Analysis

metaggR — 0.3.0

Calculate the Knowledge-Weighted Estimate

MetaHD — 0.1.3

A Multivariate Meta-Analysis Model for High-Dimensional Metabolomics Data

metaHelper — 1.0.0

Transforms Statistical Measures Commonly Used for Meta-Analysis

metaheuristicOpt — 2.0.0

Metaheuristic for Optimization

metainc — 0.2-0

Assessment of Inconsistency in Meta-Analysis using Decision Thresholds

MetaIntegration — 0.1.2

Ensemble Meta-Prediction Framework

metajam — 0.3.1

Easily Download Data and Metadata from 'DataONE'

MetaLandSim — 2.0.0

Landscape and Range Expansion Simulation

metaLik — 0.43.0

Likelihood Inference in Meta-Analysis and Meta-Regression Models

metalite — 0.1.4

ADaM Metadata Structure

metalite.ae — 0.1.3

Adverse Events Analysis Using 'metalite'

metalite.table1 — 0.4.0

Interactive Table of Descriptive Statistics in HTML

MetAlyzer — 1.0.0

Read and Analyze 'MetIDQ™' Software Output Files

metaMA — 3.1.3

Meta-Analysis for MicroArrays

metamedian — 1.1.1

Meta-Analysis of Medians

metamer — 0.3.0

Create Data with Identical Statistics

metamicrobiomeR — 1.2

Microbiome Data Analysis & Meta-Analysis with GAMLSS-BEZI & Random Effects

metamisc — 0.4.0

Meta-Analysis of Diagnosis and Prognosis Research Studies

metan — 1.18.0

Multi Environment Trials Analysis

Next page