All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

cds — 1.0.3

Constrained Dual Scaling for Detecting Response Styles

CDsampling — 0.1.4

'CDsampling': Constraint Sampling in Paid Research Studies

CDSE — 0.2.1

'Copernicus Data Space Ecosystem' API Wrapper

CDSS — 0.2-0

Course-Dependent Skill Structures

CDVI — 0.1.0

Cuddy-Della Valle Index for Capturing the Instability in Time Series Data

CDVineCopulaConditional — 0.1.1

Sampling from Conditional C- and D-Vine Copulas

ceas — 1.3.0

Cellular Energetics Analysis Software

CEC — 0.11.2

Cross-Entropy Clustering

CEDA — 1.1.1

CRISPR Screen and Gene Expression Differential Analysis

CEEMDANML — 0.1.0

CEEMDAN Decomposition Based Hybrid Machine Learning Models

ceg — 0.1.0

Chain Event Graph

CEGO — 2.4.4

Combinatorial Efficient Global Optimization

celestial — 1.4.6

Collection of Common Astronomical Conversion Routines and Functions

cellKey — 1.0.2

Consistent Perturbation of Statistical Frequency- And Magnitude Tables

cellOrigins — 0.1.3

Finds RNASeq Source Tissues Using In Situ Hybridisation Data

cellpypes — 0.3.0

Cell Type Pipes for Single-Cell RNA Sequencing Data

cellranger — 1.1.0

Translate Spreadsheet Cell Ranges to Rows and Columns

celltrackR — 1.2.1

Motion Trajectory Analysis

cellularautomata — 0.1.0

Cellular Automata

cellVolumeDist — 1.4

Functions to Fit Cell Volume Distributions and Thereby Estimate Cell Growth Rates and Division Times

cellWise — 2.5.3

Analyzing Data with Cellwise Outliers

cem — 1.1.31

Coarsened Exact Matching

cemco — 0.2

Fit 'CemCO' Algorithm

CenBAR — 0.1.1

Broken Adaptive Ridge AFT Model with Censored Data

cencrne — 1.0.0

Consistent Estimation of the Number of Communities via Regularized Network Embedding

cenGAM — 0.5.3

Censored Regression with Smooth Terms

cenROC — 2.0.0

Estimating Time-Dependent ROC Curve and AUC for Censored Data

censable — 0.0.5

Making Census Data More Usable

censCov — 1.0-0

Linear Regression with a Randomly Censored Covariate

CensMFM — 3.1

Finite Mixture of Multivariate Censored/Missing Data

censo2017 — 0.6.2

Base de Datos de Facil Acceso del Censo 2017 de Chile (2017 Chilean Census Easy Access Database)

censobr — 0.4.0

Download Data from Brazil's Population Census

censorcopula — 2.0

Estimate Parameter of Bivariate Copula

censored — 0.3.2

'parsnip' Engines for Survival Models

censReg — 0.5-38

Censored Regression (Tobit) Models

CensSpatial — 3.6

Censored Spatial Models

Census2016 — 0.2.0

Data from the Australian Census 2016

censusapi — 0.8.0

Retrieve Data from the Census APIs

censusr — 0.0.4

Collect Data from the Census API

centerline — 0.1

Extract Centerline from Closed Polygons

centiserve — 1.0.0

Find Graph Centrality Indices

centr — 0.2.1

Weighted and Unweighted Spatial Centers

centrifugeR — 0.1.7

Non-Trivial Balance of Centrifuge Rotors

CEOdata — 1.3.1.1

Datasets of the CEO (Centre d'Estudis d'Opinio) for Opinion Polls in Catalonia

CEoptim — 1.3

Cross-Entropy R Package for Optimization

CePa — 0.8.1

Centrality-Based Pathway Enrichment

cepiigeodist — 0.1

CEPII's GeoDist Datasets

cepp — 1.7

Context Driven Exploratory Projection Pursuit

cepR — 0.1.2

Busca CEPs Brasileiros

cepreader — 1.2-2

Read 'CEP' and Legacy 'CANOCO' Files

cepumd — 2.1.0

Calculate Consumer Expenditure Survey (CE) Annual Estimates

cequre — 1.5

Censored Quantile Regression & Monotonicity-Respecting Restoring

ceramic — 0.9.5

Download Online Imagery Tiles

cercospoRa — 0.0.1

Process Based Epidemiological Model for Cercospora Leaf Spot of Sugar Beet

cereal — 0.1.0

Serialize 'vctrs' Objects to 'JSON'

CERFIT — 0.1.0

Causal Effect Random Forest of Interaction Tress

CerioliOutlierDetection — 1.1.15

Outlier Detection Using the Iterated RMCD Method of Cerioli (2010)

CeRNASeek — 2.1.3

Identification and Analysis of ceRNA Regulation

ceRtainty — 1.0.0

Certainty Equivalent

Certara.NLME8 — 3.0.1

Utilities for Certara's Nonlinear Mixed-Effects Modeling Engine

Certara.R — 1.1.0

Easily Install Pharmacometric Packages and Shiny Applications Developed by Certara

Certara.RsNLME — 3.0.1

Pharmacometric Modeling

Certara.RsNLME.ModelBuilder — 3.0.1

Pharmacometric Model Building Using 'shiny'

Certara.RsNLME.ModelExecutor — 3.0.1

Execute Pharmacometric Models Using 'shiny'

Certara.VPCResults — 3.0.2

Generate Visual Predictive Checks (VPC) Using 'shiny'

ceser — 1.0.0

Cluster Estimated Standard Errors

cesR — 0.1.0

Access the Canadian Election Study Datasets

cetcolor — 0.2.0

CET Perceptually Uniform Colour Maps

ceterisParibus — 0.6

Ceteris Paribus Profiles

cfa — 0.10-1

Configural Frequency Analysis (CFA)

CFAcoop — 1.0.0

Colony Formation Assay: Taking into Account Cellular Cooperation

CFC — 1.2.0

Cause-Specific Framework for Competing-Risk Analysis

cfda — 0.12.0

Categorical Functional Data Analysis

cfdecomp — 0.4.0

Counterfactual Decomposition: MC Integration of the G-Formula

CFF — 1.0

Simple Similarity for User-Based Collaborative Filtering Systems

cffdrs — 1.9.0

Canadian Forest Fire Danger Rating System

cffr — 1.1.1

Generate Citation File Format ('cff') Metadata for R Packages

cfid — 0.1.7

Identification of Counterfactual Queries in Causal Models

CFilt — 0.3.0

Recommendation by Collaborative Filtering

cfma — 1.0

Causal Functional Mediation Analysis

cfmortality — 0.3.0

Cystic Fibrosis Survival Prediction Model Based on Stanojevic Model

CFO — 2.2.0

CFO-Type Designs in Phase I/II Clinical Trials

cforward — 0.1.0

Forward Selection using Concordance/C-Index

cfr — 0.1.2

Estimate Disease Severity and Case Ascertainment

cft — 1.0.0

Climate Futures Toolbox

CFtime — 1.4.1

Using CF-Compliant Calendars with Climate Projection Data

cg — 1.0-3

Compare Groups, Analytically and Graphically

cgaim — 1.0.1

Constrained Groupwise Additive Index Models

cgal4h — 0.1.0

'CGAL' Version 4 C++ Header Files

cgam — 1.21

Constrained Generalized Additive Model

cgAUC — 1.2.1

Calculate AUC-type measure when gold standard is continuous and the corresponding optimal linear combination of variables with respect to it.

CGE — 0.3.3

Computing General Equilibrium

CGGP — 1.0.4

Composite Grid Gaussian Processes

cglasso — 2.0.7

Conditional Graphical LASSO for Gaussian Graphical Models with Censored and Missing Values

cglm — 1.1

Fits Conditional Generalized Linear Models

cgmanalysis — 2.7.7

Clean and Analyze Continuous Glucose Monitor Data

CGManalyzer — 1.3.1

Continuous Glucose Monitoring Data Analyzer

cgmquantify — 0.1.0

Analyzing Glucose and Glucose Variability

CGNM — 0.9.0

Cluster Gauss-Newton Method

CGP — 2.1-1

Composite Gaussian Process Models

Next page