All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

censusapi — 0.8.0

Retrieve Data from the Census APIs

censusr — 0.0.4

Collect Data from the Census API

centerline — 0.1

Extract Centerline from Closed Polygons

centiserve — 1.0.0

Find Graph Centrality Indices

centr — 0.2.2

Weighted and Unweighted Spatial Centers

centrifugeR — 0.1.7

Non-Trivial Balance of Centrifuge Rotors

CEOdata — 1.3.1.1

Datasets of the CEO (Centre d'Estudis d'Opinio) for Opinion Polls in Catalonia

CEoptim — 1.3

Cross-Entropy R Package for Optimization

CePa — 0.8.1

Centrality-Based Pathway Enrichment

cepiigeodist — 0.1

CEPII's GeoDist Datasets

cepp — 1.7

Context Driven Exploratory Projection Pursuit

cepR — 0.1.2

Busca CEPs Brasileiros

cepreader — 1.2-2

Read 'CEP' and Legacy 'CANOCO' Files

cepumd — 2.1.0

Calculate Consumer Expenditure Survey (CE) Annual Estimates

cequre — 1.5

Censored Quantile Regression & Monotonicity-Respecting Restoring

ceramic — 0.9.5

Download Online Imagery Tiles

cercospoRa — 0.0.1

Process Based Epidemiological Model for Cercospora Leaf Spot of Sugar Beet

cereal — 0.1.0

Serialize 'vctrs' Objects to 'JSON'

CERFIT — 0.1.0

Causal Effect Random Forest of Interaction Tress

CerioliOutlierDetection — 1.1.15

Outlier Detection Using the Iterated RMCD Method of Cerioli (2010)

CeRNASeek — 2.1.3

Identification and Analysis of ceRNA Regulation

ceRtainty — 1.0.0

Certainty Equivalent

Certara.NLME8 — 3.0.1

Utilities for Certara's Nonlinear Mixed-Effects Modeling Engine

Certara.R — 1.1.0

Easily Install Pharmacometric Packages and Shiny Applications Developed by Certara

Certara.RDarwin — 1.1.1

Interface for 'pyDarwin' Machine Learning Pharmacometric Model Development

Certara.RsNLME — 3.0.1

Pharmacometric Modeling

Certara.RsNLME.ModelBuilder — 3.0.1

Pharmacometric Model Building Using 'shiny'

Certara.RsNLME.ModelExecutor — 3.0.1

Execute Pharmacometric Models Using 'shiny'

Certara.VPCResults — 3.0.2

Generate Visual Predictive Checks (VPC) Using 'shiny'

Certara.Xpose.NLME — 2.0.2

Enhances 'xpose' Diagnostics for Pharmacometric Models from 'Certara.RsNLME' and Phoenix NLME

ceser — 1.0.0

Cluster Estimated Standard Errors

cesR — 0.1.0

Access the Canadian Election Study Datasets

cetcolor — 0.2.0

CET Perceptually Uniform Colour Maps

ceterisParibus — 0.6

Ceteris Paribus Profiles

cfa — 0.10-1

Configural Frequency Analysis (CFA)

CFAcoop — 1.0.0

Colony Formation Assay: Taking into Account Cellular Cooperation

CFC — 1.2.0

Cause-Specific Framework for Competing-Risk Analysis

cfda — 0.12.1

Categorical Functional Data Analysis

cfdecomp — 0.4.0

Counterfactual Decomposition: MC Integration of the G-Formula

CFF — 1.0

Simple Similarity for User-Based Collaborative Filtering Systems

cffdrs — 1.9.0

Canadian Forest Fire Danger Rating System

cffr — 1.2.0

Generate Citation File Format ('cff') Metadata for R Packages

cfid — 0.1.7

Identification of Counterfactual Queries in Causal Models

CFilt — 0.3.0

Recommendation by Collaborative Filtering

cfma — 1.0

Causal Functional Mediation Analysis

cfmortality — 0.3.0

Cystic Fibrosis Survival Prediction Model Based on Stanojevic Model

CFO — 2.2.0

CFO-Type Designs in Phase I/II Clinical Trials

cforward — 0.1.0

Forward Selection using Concordance/C-Index

cfr — 0.2.0

Estimate Disease Severity and Case Ascertainment

cft — 1.0.0

Climate Futures Toolbox

CFtime — 1.5.0

Using CF-Compliant Calendars with Climate Projection Data

cg — 1.0-3

Compare Groups, Analytically and Graphically

cgaim — 1.0.1

Constrained Groupwise Additive Index Models

cgal4h — 0.1.0

'CGAL' Version 4 C++ Header Files

cgam — 1.23

Constrained Generalized Additive Model

cgAUC — 1.2.1

Calculate AUC-type measure when gold standard is continuous and the corresponding optimal linear combination of variables with respect to it.

CGE — 0.3.3

Computing General Equilibrium

CGGP — 1.0.4

Composite Grid Gaussian Processes

cglasso — 2.0.7

Conditional Graphical LASSO for Gaussian Graphical Models with Censored and Missing Values

cglm — 1.1

Fits Conditional Generalized Linear Models

cgmanalysis — 3.0.2

Clean and Analyze Continuous Glucose Monitor Data

CGManalyzer — 1.3.1

Continuous Glucose Monitoring Data Analyzer

cgmquantify — 0.1.0

Analyzing Glucose and Glucose Variability

CGNM — 0.9.1

Cluster Gauss-Newton Method

CGP — 2.1-1

Composite Gaussian Process Models

CGPfunctions — 0.6.3

Powell Miscellaneous Functions for Teaching and Learning Statistics

CGR — 0.1.0

Compound Growth Rate for Capturing the Growth Rate Over the Period

cgwtools — 4.1

Miscellaneous Tools

ch — 0.1.0.2

About some Small Functions

chainbinomial — 0.1.5

Chain Binomial Models for Analysis of Infectious Disease Data

ChainLadder — 0.2.20

Statistical Methods and Models for Claims Reserving in General Insurance

chameleon — 0.2-3

Automatic Colors for Multi-Dimensional Data

chandwich — 1.1.6

Chandler-Bate Sandwich Loglikelihood Adjustment

changepoint — 2.3

Methods for Changepoint Detection

changepoint.geo — 1.0.2

Geometrically Inspired Multivariate Changepoint Detection

changepoint.influence — 1.0.2

Package to Calculate the Influence of the Data on a Changepoint Segmentation

changepoint.np — 1.0.5

Methods for Nonparametric Changepoint Detection

changepointGA — 0.1.0

Changepoint Detection via Modified Genetic Algorithm

changepoints — 1.1.0

A Collection of Change-Point Detection Methods

changepointsVar — 0.1.1

Change-Points Detections for Changes in Variance

ChangePointTaylor — 0.3

Identify Changes in Mean

ChangepointTesting — 1.1

Change Point Estimation for Clustered Signals

changepointTests — 0.1.7

Change Point Tests for Joint Distributions and Copulas

changer — 0.0.5

Change R Package Name

changeS — 1.0.1

S-Curve Fit for Changepoint Analysis

ChannelAttribution — 2.0.7

Markov Model for Online Multi-Channel Attribution

ChannelAttributionApp — 1.3

Shiny Web Application for the Multichannel Attribution Problem

chantrics — 1.0.0

Loglikelihood Adjustments for Econometric Models

Chaos01 — 1.2.1

0-1 Test for Chaos

ChaosGame — 1.4

Chaos Game

charcuterie — 0.0.6

Handle Strings as Vectors of Characters

charlatan — 0.6.1

Make Fake Data

charlesschwabapi — 1.0.4

Wrapper Functions Around 'Charles Schwab Individual Trader API'

chartql — 0.1.0

Simplified Language for Plots and Charts

chartreview — 1.0

Adaptive Multi-Wave Sampling for Efficient Chart Validation

chatAI4R — 0.3.6

Chat-Based Interactive Artificial Intelligence for R

chatgpt — 0.2.3

Interface to 'ChatGPT' from R

chatRater — 1.0.0

Rating Text Using Large Language Models

chattr — 0.2.1

Interact with Large Language Models in 'RStudio'

cheapr — 1.0.1

Simple Functions to Save Time and Memory

Next page