Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.

install.packages("xgboost")

1.7.8.1 by Jiaming Yuan, 4 months ago


https://github.com/dmlc/xgboost


Report a bug at https://github.com/dmlc/xgboost/issues


Browse source code at https://github.com/cran/xgboost


Authors: Tianqi Chen [aut] , Tong He [aut] , Michael Benesty [aut] , Vadim Khotilovich [aut] , Yuan Tang [aut] , Hyunsu Cho [aut] , Kailong Chen [aut] , Rory Mitchell [aut] , Ignacio Cano [aut] , Tianyi Zhou [aut] , Mu Li [aut] , Junyuan Xie [aut] , Min Lin [aut] , Yifeng Geng [aut] , Yutian Li [aut] , Jiaming Yuan [aut, cre] , XGBoost contributors [cph] (base XGBoost implementation)


Documentation:   PDF Manual  


Apache License (== 2.0) | file LICENSE license


Imports Matrix, methods, data.table, jsonlite

Suggests knitr, rmarkdown, ggplot2, DiagrammeR, Ckmeans.1d.dp, vcd, testthat, lintr, igraph, float, crayon, titanic

System requirements: GNU make, C++17


Imported by BioPred, CRE, CausalGPS, DICEM, DSAM, DSWE, DeepLearningCausal, EFAfactors, EIX, GPCERF, GeneralisedCovarianceMeasure, ImHD, LTFHPlus, MBMethPred, MSclassifR, PoweREST, PriceIndices, ReSurv, SELF, SEMdeep, SHAPforxgboost, TSCI, adapt4pv, alookr, audrex, autoBagging, autostats, causalweight, cpfa, creditmodel, csmpv, dblr, ddml, fastrmodels, glmnetr, iimi, inTrees, irboost, latentFactoR, ldmppr, mikropml, mixgb, modeltime, nfl4th, nflfastR, nsga3, oncrawlR, personalized, predhy, predhy.GUI, predictoR, promor, radiant.model, rminer, roseRF, sentiment.ai, shapviz, simPop, surveyvoi, tidybins, traineR, tsensembler, twang, visaOTR, wactor, weightedGCM, xgb2sql, xrf.

Depended on by twangRDC.

Suggested by BAGofT, Boruta, DALEXtra, FLAME, FeatureHashing, GenericML, MachineShop, MantaID, ParBayesianOptimization, PheCAP, SuperLearner, bigsnpr, biomod2, breakDown, bundle, butcher, coefplot, cornet, cuda.ml, drape, easyalluvial, embed, explore, familiar, fastml, fdm2id, flevr, flowml, forecastML, lime, marginaleffects, mcboost, miesmuschel, mlflow, mllrnrs, mlr, mlr3benchmark, mlr3hyperband, mlr3learners, mlr3shiny, mlr3tuning, mlr3tuningspaces, mlr3viz, mlsurvlrnrs, modelStudio, modeltime.ensemble, nlpred, offsetreg, parsnip, pdp, pmml, polle, qeML, r2pmml, rBayesianOptimization, rattle, sense, shapr, sits, stackgbm, superMICE, superml, survex, targeted, tidypredict, tidysdm, treeshap, tune, twangMediation, utiml, vetiver, vimp, vivid.

Enhanced by fastshap, vip.


See at CRAN