Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 197 packages in 0.01 seconds

tidyr — by Hadley Wickham, 7 months ago

Tidy Messy Data

Tools to help to create tidy data, where each column is a variable, each row is an observation, and each cell contains a single value. 'tidyr' contains tools for changing the shape (pivoting) and hierarchy (nesting and 'unnesting') of a dataset, turning deeply nested lists into rectangular data frames ('rectangling'), and extracting values out of string columns. It also includes tools for working with missing values (both implicit and explicit).

broom — by Simon Couch, 2 months ago

Convert Statistical Objects into Tidy Tibbles

Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.

rlang — by Lionel Henry, 5 months ago

Functions for Base Types and Core R and 'Tidyverse' Features

A toolbox for working with base types, core R features like the condition system, and core 'Tidyverse' features like tidy evaluation.

tidygraph — by Thomas Lin Pedersen, a year ago

A Tidy API for Graph Manipulation

A graph, while not "tidy" in itself, can be thought of as two tidy data frames describing node and edge data respectively. 'tidygraph' provides an approach to manipulate these two virtual data frames using the API defined in the 'dplyr' package, as well as provides tidy interfaces to a lot of common graph algorithms.

tidytext — by Julia Silge, 5 months ago

Text Mining using 'dplyr', 'ggplot2', and Other Tidy Tools

Using tidy data principles can make many text mining tasks easier, more effective, and consistent with tools already in wide use. Much of the infrastructure needed for text mining with tidy data frames already exists in packages like 'dplyr', 'broom', 'tidyr', and 'ggplot2'. In this package, we provide functions and supporting data sets to allow conversion of text to and from tidy formats, and to switch seamlessly between tidy tools and existing text mining packages.

yardstick — by Davis Vaughan, 6 months ago

Tidy Characterizations of Model Performance

Tidy tools for quantifying how well model fits to a data set such as confusion matrices, class probability curve summaries, and regression metrics (e.g., RMSE).

tsibble — by Earo Wang, 5 months ago

Tidy Temporal Data Frames and Tools

Provides a 'tbl_ts' class (the 'tsibble') for temporal data in an data- and model-oriented format. The 'tsibble' provides tools to easily manipulate and analyse temporal data, such as filling in time gaps and aggregating over calendar periods.

broom.mixed — by Ben Bolker, 2 months ago

Tidying Methods for Mixed Models

Convert fitted objects from various R mixed-model packages into tidy data frames along the lines of the 'broom' package. The package provides three S3 generics for each model: tidy(), which summarizes a model's statistical findings such as coefficients of a regression; augment(), which adds columns to the original data such as predictions, residuals and cluster assignments; and glance(), which provides a one-row summary of model-level statistics.

tune — by Max Kuhn, 2 months ago

Tidy Tuning Tools

The ability to tune models is important. 'tune' contains functions and classes to be used in conjunction with other 'tidymodels' packages for finding reasonable values of hyper-parameters in models, pre-processing methods, and post-processing steps.

tidyquant — by Matt Dancho, 7 months ago

Tidy Quantitative Financial Analysis

Bringing business and financial analysis to the 'tidyverse'. The 'tidyquant' package provides a convenient wrapper to various 'xts', 'zoo', 'quantmod', 'TTR' and 'PerformanceAnalytics' package functions and returns the objects in the tidy 'tibble' format. The main advantage is being able to use quantitative functions with the 'tidyverse' functions including 'purrr', 'dplyr', 'tidyr', 'ggplot2', 'lubridate', etc. See the 'tidyquant' website for more information, documentation and examples.