Tidy Characterizations of Model Performance

Tidy tools for quantifying how well model fits to a data set such as confusion matrices, class probability curve summaries, and regression metrics (e.g., RMSE).

BuildStatus CoverageStatus CRAN_Status_Badge Downloads lifecycle


yardstick is a package to estimate how well models are working using tidy data principles. See the package webpage for more information.


To install the package:

# Development version:

Two class metric

For example, suppose you create a classification model and predict on a new data set. You might have data that looks like this:

#>    truth  Class1   Class2 predicted
#> 1 Class2 0.00359 0.996411    Class2
#> 2 Class1 0.67862 0.321379    Class1
#> 3 Class2 0.11089 0.889106    Class2
#> 4 Class1 0.73516 0.264838    Class1
#> 5 Class2 0.01624 0.983760    Class2
#> 6 Class1 0.99928 0.000725    Class1

You can use a dplyr-like syntax to compute common performance characteristics of the model and get them back in a data frame:

metrics(two_class_example, truth, predicted)
#> # A tibble: 2 x 3
#>   .metric  .estimator .estimate
#>   <chr>    <chr>          <dbl>
#> 1 accuracy binary         0.838
#> 2 kap      binary         0.675
# or 
two_class_example %>% 
  roc_auc(truth, Class1)
#> # A tibble: 1 x 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 roc_auc binary         0.939

Multiclass metrics

All classification metrics have at least one multiclass extension, with many of them having multiple ways to calculate multiclass metrics.

hpc_cv <- as_tibble(hpc_cv)
#> # A tibble: 3,467 x 7
#>    obs   pred     VF      F       M          L Resample
#>    <fct> <fct> <dbl>  <dbl>   <dbl>      <dbl> <chr>   
#>  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01  
#>  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01  
#>  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01  
#>  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01  
#>  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01  
#>  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01  
#>  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01  
#>  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01  
#>  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01  
#> 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01  
#> # … with 3,457 more rows
# Macro averaged multiclass precision
precision(hpc_cv, obs, pred)
#> # A tibble: 1 x 3
#>   .metric   .estimator .estimate
#>   <chr>     <chr>          <dbl>
#> 1 precision macro          0.631
# Micro averaged multiclass precision
precision(hpc_cv, obs, pred, estimator = "micro")
#> # A tibble: 1 x 3
#>   .metric   .estimator .estimate
#>   <chr>     <chr>          <dbl>
#> 1 precision micro          0.709

Calculating metrics on resamples

If you have multiple resamples of a model, you can use a metric on a grouped data frame to calculate the metric across all resamples at once.

This calculates multiclass ROC AUC using the method described in Hand, Till (2001), and does it across all 10 resamples at once.

hpc_cv %>%
  group_by(Resample) %>%
  roc_auc(obs, VF:L)
#> # A tibble: 10 x 4
#>    Resample .metric .estimator .estimate
#>    <chr>    <chr>   <chr>          <dbl>
#>  1 Fold01   roc_auc hand_till      0.831
#>  2 Fold02   roc_auc hand_till      0.817
#>  3 Fold03   roc_auc hand_till      0.869
#>  4 Fold04   roc_auc hand_till      0.849
#>  5 Fold05   roc_auc hand_till      0.811
#>  6 Fold06   roc_auc hand_till      0.836
#>  7 Fold07   roc_auc hand_till      0.825
#>  8 Fold08   roc_auc hand_till      0.846
#>  9 Fold09   roc_auc hand_till      0.836
#> 10 Fold10   roc_auc hand_till      0.820

Autoplot methods for easy visualization

Curve based methods such as roc_curve(), pr_curve() and gain_curve() all have ggplot2::autoplot() methods that allow for powerful and easy visualization.

hpc_cv %>%
  group_by(Resample) %>%
  roc_curve(obs, VF:L) %>%


Quasiquotation can also be used to supply inputs.

# probability columns:
lvl <- levels(two_class_example$truth)
two_class_example %>% 
  mn_log_loss(truth, !! lvl[1])
#> # A tibble: 1 x 3
#>   .metric     .estimator .estimate
#>   <chr>       <chr>          <dbl>
#> 1 mn_log_loss binary         0.328


yardstick 0.0.3

New metrics and functionality

  • mase() is a numeric metric for the mean absolute scaled error. It is generally useful when forecasting with time series (@alexhallam, #68).

  • huber_loss() is a numeric metric that is less sensitive to outliers than rmse(), but is more sensitive than mae() for small errors (@blairj09, #71).

  • huber_loss_pseudo() is a smoothed form of huber_loss() (@blairj09, #71).

  • smape() is a numeric metric that is based on percentage errors (@riazhedayati, #67).

  • conf_mat objects now have two ggplot2::autoplot() methods for easy visualization of the confusion matrix as either a heat map or a mosaic plot (@EmilHvitfeldt, #10).

Other improvements

  • metric_set() now returns a classed function. If numeric metrics are used, a "numeric_metric_set" function is returned. If class or probability metrics are used, a "class_prob_metric_set" is returned.

Bug fixes

  • Tests related to the fixed R 3.6 sample() function have been fixed.

  • f_meas() propagates NA values from precision() and recall() correctly (#77).

  • All "micro" estimators now propagate NA values through correctly.

  • roc_auc(estimator = "hand_till") now correctly computes the metric when the column names of the probability matrix are not the exact same as the levels of truth. Note that the computation still assumes that the order of the supplied probability matrix columns still matches the order of levels(truth), like other multiclass metrics (#86).

yardstick 0.0.2

Breaking changes

A desire to standardize the yardstick API is what drove these breaking changes. The output of each metric is now in line with tidy principles, returning a tibble rather than a single numeric. Additionally, all metrics now have a standard argument list so you should be able to switch between metrics and combine them together effortlessly.

  • All metrics now return a tibble rather than a single numeric value. This format allows metrics to work with grouped data frames (for resamples). It also allows you to bundle multiple metrics together with a new function, metric_set().

  • For all class probability metrics, now only 1 column can be passed to ... when a binary implementation is used. Those metrics will no longer select only the first column when multiple columns are supplied, and will instead throw an error.

  • The summary() method for conf_mat objects now returns a tibble to be consistent with the change to the metric functions.

  • For naming consistency, mnLogLoss() was renamed to mn_log_loss()

  • mn_log_loss() now returns the negative log loss for the multinomial distribution.

  • The argument na.rm has been changed to na_rm in all metrics to align with the tidymodels model implementation principles.

Core features

  • Each metric now has a vector interface to go alongside the data frame interface. All vector functions end in _vec(). The vector interface accepts vector/matrix inputs and returns a single numeric value.

  • Multiclass support has been added for each classification metric. The support varies from one metric to the next, but generally macro and micro averaging is available for all metrics, with some metrics having specialized multiclass implementations (for example, roc_auc() supports the multiclass generalization presented in a paper by Hand and Till). For more information, see vignette("multiclass", "yardstick").

  • All metrics now work with grouped data frames. This produces a tibble with as many rows as there are groups, and is useful when used alongside resampling techniques.

New metrics and functionality

  • mape() calculates the mean absolute percent error.

  • kap() is a metric similar to accuracy() that calculates Cohen's kappa.

  • detection_prevalence() calculates the number of predicted positive events relative to the total number of predictions.

  • bal_accuracy() calculates balanced accuracy as the average of sensitivity and specificity.

  • roc_curve() calculates receiver operator curves and returns the results as a tibble.

  • pr_curve() calculates precision recall curves.

  • gain_curve() and lift_curve() calculate the information used in gain and lift curves.

  • gain_capture() is a measure of performance similar in spirit to AUC but applied to a gain curve.

  • pr_curve(), roc_curve(), gain_curve() and lift_curve() all have ggplot2::autoplot() methods for easy visualization.

  • metric_set() constructs functions that calculate multiple metrics at once.

Other improvements

  • The infrastructure for creating metrics has been exposed to allow users to extend yardstick to work with their own metrics. You might want to do this if you want your metrics to work with grouped data frames out of the box, or if you want the standardization and error checking that yardstick already provides. See vignette("custom-metrics", "yardstick") for a few examples.

  • A vignette describing the three classes of metrics used in yardstick has been added. It also includes a list of every metric available, grouped by class. See vignette("metric-types", "yardstick").

  • The error messages in yardstick should now be much more informative, with better feedback about the types of input that each metric can use and about what kinds of metrics can be used together (i.e. in metric_set()).

  • There is now a grouped_df method for conf_mat() that returns a tibble with a list column of conf_mat objects.

  • Each metric now has its own help page. This allows us to better document the nuances of each metric without cluttering the help pages of other metrics.


  • broom has been removed from Depends, and is replaced by generics in Suggests.

  • tidyr and ggplot2 have been moved to Suggests.

  • MLmetrics has been removed as a dependency.

yardstick 0.0.1

  • First CRAN release

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.