Found 495 packages in 0.01 seconds
Weighting and Weighted Statistics
Provides a variety of functions for producing simple weighted statistics, such as weighted Pearson's correlations, partial correlations, Chi-Squared statistics, histograms, and t-tests as well as simple weighting graphics including weighted histograms, box plots, bar plots, and violin plots. Also includes software for quickly recoding survey data and plotting estimates from interaction terms in regressions (and multiply imputed regressions) both with and without weights and summarizing various types of regressions. Some portions of this package were assisted by AI-generated suggestions using OpenAI's GPT model, with human review and integration.
Functional Data Analysis and Utilities for Statistical Computing
Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.
Parametric Statistical Modelling and Inference for the 'spatstat' Family
Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.
Causal Mediation Analysis
We implement parametric and non parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010)
Bayesian Applied Regression Modeling via Stan
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
Time Series Analysis
Contains R functions and datasets detailed in the book "Time Series Analysis with Applications in R (second edition)" by Jonathan Cryer and Kung-Sik Chan.
Estimated Marginal Means, aka Least-Squares Means
Obtain estimated marginal means (EMMs) for many linear, generalized
linear, and mixed models. Compute contrasts or linear functions of EMMs,
trends, and comparisons of slopes. Plots and other displays.
Least-squares means are discussed, and the term "estimated marginal means"
is suggested, in Searle, Speed, and Milliken (1980) Population marginal means
in the linear model: An alternative to least squares means, The American
Statistician 34(4), 216-221
Ordination and Multivariate Analysis for Ecology
A variety of ordination and community analyses useful in analysis of data sets in community ecology. Includes many of the common ordination methods, with graphical routines to facilitate their interpretation, as well as several novel analyses.
Distributed Lag Non-Linear Models
Collection of functions for distributed lag linear and non-linear models.
Statistical Analysis in Epidemiology
Functions for demographic and epidemiological analysis in the Lexis diagram, i.e. register and cohort follow-up data. In particular representation, manipulation, rate estimation and simulation for multistate data - the Lexis suite of functions, which includes interfaces to 'mstate', 'etm' and 'cmprsk' packages. Contains functions for Age-Period-Cohort and Lee-Carter modeling and a function for interval censored data. Has functions for extracting and manipulating parameter estimates and predicted values (ci.lin and its cousins), as well as a number of epidemiological data sets.