Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 506 packages in 0.04 seconds

MuMIn — by Kamil Bartoń, 10 months ago

Multi-Model Inference

Tools for model selection and model averaging with support for a wide range of statistical models. Automated model selection through subsets of the maximum model, with optional constraints for model inclusion. Averaging of model parameters and predictions based on model weights derived from information criteria (AICc and alike) or custom model weighting schemes.

fda.usc — by Manuel Oviedo de la Fuente, a year ago

Functional Data Analysis and Utilities for Statistical Computing

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

weights — by Josh Pasek, 7 months ago

Weighting and Weighted Statistics

Provides a variety of functions for producing simple weighted statistics, such as weighted Pearson's correlations, partial correlations, Chi-Squared statistics, histograms, and t-tests as well as simple weighting graphics including weighted histograms, box plots, bar plots, and violin plots. Also includes software for quickly recoding survey data and plotting estimates from interaction terms in regressions (and multiply imputed regressions) both with and without weights and summarizing various types of regressions. Some portions of this package were assisted by AI-generated suggestions using OpenAI's GPT model, with human review and integration.

rstanarm — by Ben Goodrich, 4 months ago

Bayesian Applied Regression Modeling via Stan

Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.

mediation — by Teppei Yamamoto, 8 months ago

Causal Mediation Analysis

We implement parametric and non parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) , Imai, Keele and Tingley (2010) , Imai, Tingley and Yamamoto (2013) , and Imai and Yamamoto (2013) . In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.

dlnm — by Antonio Gasparrini, 9 months ago

Distributed Lag Non-Linear Models

Collection of functions for distributed lag linear and non-linear models.

labdsv — by David W. Roberts, 6 months ago

Ordination and Multivariate Analysis for Ecology

A variety of ordination and community analyses useful in analysis of data sets in community ecology. Includes many of the common ordination methods, with graphical routines to facilitate their interpretation, as well as several novel analyses.

Epi — by Bendix Carstensen, 4 months ago

Statistical Analysis in Epidemiology

Functions for demographic and epidemiological analysis in the Lexis diagram, i.e. register and cohort follow-up data. In particular representation, manipulation, rate estimation and simulation for multistate data - the Lexis suite of functions, which includes interfaces to 'mstate', 'etm' and 'cmprsk' packages. Contains functions for Age-Period-Cohort and Lee-Carter modeling and a function for interval censored data. Has functions for extracting and manipulating parameter estimates and predicted values (ci.lin and its cousins), as well as a number of epidemiological data sets.

brms — by Paul-Christian Bürkner, 5 months ago

Bayesian Regression Models using 'Stan'

Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference. A wide range of distributions and link functions are supported, allowing users to fit -- among others -- linear, robust linear, count data, survival, response times, ordinal, zero-inflated, hurdle, and even self-defined mixture models all in a multilevel context. Further modeling options include both theory-driven and data-driven non-linear terms, auto-correlation structures, censoring and truncation, meta-analytic standard errors, and quite a few more. In addition, all parameters of the response distribution can be predicted in order to perform distributional regression. Prior specifications are flexible and explicitly encourage users to apply prior distributions that actually reflect their prior knowledge. Models can easily be evaluated and compared using several methods assessing posterior or prior predictions. References: Bürkner (2017) ; Bürkner (2018) ; Bürkner (2021) ; Carpenter et al. (2017) .

tourr — by Dianne Cook, 7 months ago

Tour Methods for Multivariate Data Visualisation

Implements geodesic interpolation and basis generation functions that allow you to create new tour methods from R.