Found 471 packages in 0.01 seconds
Bayesian Applied Regression Modeling via Stan
Estimates previously compiled regression models using the 'rstan' package, which provides the R interface to the Stan C++ library for Bayesian estimation. Users specify models via the customary R syntax with a formula and data.frame plus some additional arguments for priors.
Ordination and Multivariate Analysis for Ecology
A variety of ordination and community analyses useful in analysis of data sets in community ecology. Includes many of the common ordination methods, with graphical routines to facilitate their interpretation, as well as several novel analyses.
Time Series Analysis
Contains R functions and datasets detailed in the book "Time Series Analysis with Applications in R (second edition)" by Jonathan Cryer and Kung-Sik Chan.
Estimated Marginal Means, aka Least-Squares Means
Obtain estimated marginal means (EMMs) for many linear, generalized
linear, and mixed models. Compute contrasts or linear functions of EMMs,
trends, and comparisons of slopes. Plots and other displays.
Least-squares means are discussed, and the term "estimated marginal means"
is suggested, in Searle, Speed, and Milliken (1980) Population marginal means
in the linear model: An alternative to least squares means, The American
Statistician 34(4), 216-221
Statistical Analysis in Epidemiology
Functions for demographic and epidemiological analysis in the Lexis diagram, i.e. register and cohort follow-up data. In particular representation, manipulation, rate estimation and simulation for multistate data - the Lexis suite of functions, which includes interfaces to 'mstate', 'etm' and 'cmprsk' packages. Contains functions for Age-Period-Cohort and Lee-Carter modeling and a function for interval censored data and some useful functions for tabulation and plotting, as well as a number of epidemiological data sets.
Functional Data Analysis and Empirical Dynamics
A versatile package that provides implementation of various
methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this
package is Functional Principal Component Analysis (FPCA), a key technique for
functional data analysis, for sparsely or densely sampled random trajectories
and time courses, via the Principal Analysis by Conditional Estimation
(PACE) algorithm. This core algorithm yields covariance and mean functions,
eigenfunctions and principal component (scores), for both functional data and
derivatives, for both dense (functional) and sparse (longitudinal) sampling designs.
For sparse designs, it provides fitted continuous trajectories with confidence bands,
even for subjects with very few longitudinal observations. PACE is a viable and
flexible alternative to random effects modeling of longitudinal data. There is also a
Matlab version (PACE) that contains some methods not available on fdapace and vice
versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626.
Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry).
References: Wang, J.L., Chiou, J., Müller, H.G. (2016)
Distributed Lag Non-Linear Models
Collection of functions for distributed lag linear and non-linear models.
Bayesian Regression Models using 'Stan'
Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include both theory-driven and
data-driven non-linear terms, auto-correlation structures, censoring and
truncation, meta-analytic standard errors, and quite a few more.
In addition, all parameters of the response distribution can be predicted
in order to perform distributional regression. Prior specifications are
flexible and explicitly encourage users to apply prior distributions that
actually reflect their prior knowledge. Models can easily be evaluated and
compared using several methods assessing posterior or prior predictions.
References: Bürkner (2017)
Utilities from 'Seminar fuer Statistik' ETH Zurich
Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().
SIMEX- And MCSIMEX-Algorithm for Measurement Error Models
Implementation of the SIMEX-Algorithm by Cook & Stefanski (1994)