Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 454 packages in 0.01 seconds

ks — by Tarn Duong, 2 months ago

Kernel Smoothing

Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018) .

freqparcoord — by Norm Matloff, 9 years ago

Novel Methods for Parallel Coordinates

New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.

effectsize — by Mattan S. Ben-Shachar, 5 months ago

Indices of Effect Size

Provide utilities to work with indices of effect size for a wide variety of models and hypothesis tests (see list of supported models using the function 'insight::supported_models()'), allowing computation of and conversion between indices such as Cohen's d, r, odds, etc. References: Ben-Shachar et al. (2020) .

sfsmisc — by Martin Maechler, 18 days ago

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().

tourr — by Dianne Cook, 7 months ago

Tour Methods for Multivariate Data Visualisation

Implements geodesic interpolation and basis generation functions that allow you to create new tour methods from R.

nlraa — by Fernando Miguez, a year ago

Nonlinear Regression for Agricultural Applications

Additional nonlinear regression functions using self-start (SS) algorithms. One of the functions is the Beta growth function proposed by Yin et al. (2003) . There are several other functions with breakpoints (e.g. linear-plateau, plateau-linear, exponential-plateau, plateau-exponential, quadratic-plateau, plateau-quadratic and bilinear), a non-rectangular hyperbola and a bell-shaped curve. Twenty eight (28) new self-start (SS) functions in total. This package also supports the publication 'Nonlinear regression Models and applications in agricultural research' by Archontoulis and Miguez (2015) , a book chapter with similar material and a publication by Oddi et. al. (2019) in Ecology and Evolution . The function 'nlsLMList' uses 'nlsLM' for fitting, but it is otherwise almost identical to 'nlme::nlsList'.In addition, this release of the package provides functions for conducting simulations for 'nlme' and 'gnls' objects as well as bootstrapping. These functions are intended to work with the modeling framework of the 'nlme' package. It also provides four vignettes with extended examples.

mrds — by Laura Marshall, a month ago

Mark-Recapture Distance Sampling

Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.

bestNormalize — by Ryan Andrew Peterson, a year ago

Normalizing Transformation Functions

Estimate a suite of normalizing transformations, including a new adaptation of a technique based on ranks which can guarantee normally distributed transformed data if there are no ties: ordered quantile normalization (ORQ). ORQ normalization combines a rank-mapping approach with a shifted logit approximation that allows the transformation to work on data outside the original domain. It is also able to handle new data within the original domain via linear interpolation. The package is built to estimate the best normalizing transformation for a vector consistently and accurately. It implements the Box-Cox transformation, the Yeo-Johnson transformation, three types of Lambert WxF transformations, and the ordered quantile normalization transformation. It estimates the normalization efficacy of other commonly used transformations, and it allows users to specify custom transformations or normalization statistics. Finally, functionality can be integrated into a machine learning workflow via recipes.

QRM — by Bernhard Pfaff, 5 years ago

Provides R-Language Code to Examine Quantitative Risk Management Concepts

Provides functions/methods to accompany the book Quantitative Risk Management: Concepts, Techniques and Tools by Alexander J. McNeil, Ruediger Frey, and Paul Embrechts.

face — by Cai Li, 2 years ago

Fast Covariance Estimation for Sparse Functional Data

We implement the Fast Covariance Estimation for Sparse Functional Data paper published in Statistics and Computing .