Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 499 packages in 0.01 seconds

grafify — by Avinash R Shenoy, 4 months ago

Easy Graphs for Data Visualisation and Linear Models for ANOVA

Easily explore data by plotting graphs with a few lines of code. Use these ggplot() wrappers to quickly draw graphs of scatter/dots with box-whiskers, violins or SD error bars, data distributions, before-after graphs, factorial ANOVA and more. Customise graphs in many ways, for example, by choosing from colour blind-friendly palettes (12 discreet, 3 continuous and 2 divergent palettes). Use the simple code for ANOVA as ordinary (lm()) or mixed-effects linear models (lmer()), including randomised-block or repeated-measures designs, and fit non-linear outcomes as a generalised additive model (gam) using mgcv(). Obtain estimated marginal means and perform post-hoc comparisons on fitted models (via emmeans()). Also includes small datasets for practising code and teaching basics before users move on to more complex designs. See vignettes for details on usage < https://grafify.shenoylab.com/>. Citation: .

ggplot2 — by Thomas Lin Pedersen, a month ago

Create Elegant Data Visualisations Using the Grammar of Graphics

A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

sdmTMB — by Sean C. Anderson, a month ago

Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'

Implements spatial and spatiotemporal GLMMs (Generalized Linear Mixed Effect Models) using 'TMB', 'fmesher', and the SPDE (Stochastic Partial Differential Equation) Gaussian Markov random field approximation to Gaussian random fields. One common application is for spatially explicit species distribution models (SDMs). See Anderson et al. (2024) .

vegan — by Jari Oksanen, 3 months ago

Community Ecology Package

Ordination methods, diversity analysis and other functions for community and vegetation ecologists.

VGAM — by Thomas Yee, 24 days ago

Vector Generalized Linear and Additive Models

An implementation of about 6 major classes of statistical regression models. The central algorithm is Fisher scoring and iterative reweighted least squares. At the heart of this package are the vector generalized linear and additive model (VGLM/VGAM) classes. VGLMs can be loosely thought of as multivariate GLMs. VGAMs are data-driven VGLMs that use smoothing. The book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) gives details of the statistical framework and the package. Currently only fixed-effects models are implemented. Many (100+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE. The other classes are RR-VGLMs (reduced-rank VGLMs), quadratic RR-VGLMs, doubly constrained RR-VGLMs, quadratic RR-VGLMs, reduced-rank VGAMs, RCIMs (row-column interaction models)---these classes perform constrained and unconstrained quadratic ordination (CQO/UQO) models in ecology, as well as constrained additive ordination (CAO). Hauck-Donner effect detection is implemented. Note that these functions are subject to change; see the NEWS and ChangeLog files for latest changes.

car — by John Fox, a year ago

Companion to Applied Regression

Functions to Accompany J. Fox and S. Weisberg, An R Companion to Applied Regression, Third Edition, Sage, 2019.

lme4 — by Ben Bolker, 25 days ago

Linear Mixed-Effects Models using 'Eigen' and S4

Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".

latticeExtra — by Deepayan Sarkar, 4 months ago

Extra Graphical Utilities Based on Lattice

Building on the infrastructure provided by the lattice package, this package provides several new high-level functions and methods, as well as additional utilities such as panel and axis annotation functions.

pscl — by Simon Jackman, 2 years ago

Political Science Computational Laboratory

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching; seats-votes curves.

ks — by Tarn Duong, 8 months ago

Kernel Smoothing

Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018) .