Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 461 packages in 0.01 seconds

lme4 — by Ben Bolker, 2 months ago

Linear Mixed-Effects Models using 'Eigen' and S4

Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".

latticeExtra — by Deepayan Sarkar, 3 years ago

Extra Graphical Utilities Based on Lattice

Building on the infrastructure provided by the lattice package, this package provides several new high-level functions and methods, as well as additional utilities such as panel and axis annotation functions.

broom — by Simon Couch, 5 months ago

Convert Statistical Objects into Tidy Tibbles

Summarizes key information about statistical objects in tidy tibbles. This makes it easy to report results, create plots and consistently work with large numbers of models at once. Broom provides three verbs that each provide different types of information about a model. tidy() summarizes information about model components such as coefficients of a regression. glance() reports information about an entire model, such as goodness of fit measures like AIC and BIC. augment() adds information about individual observations to a dataset, such as fitted values or influence measures.

VGAM — by Thomas Yee, 22 days ago

Vector Generalized Linear and Additive Models

An implementation of about 6 major classes of statistical regression models. The central algorithm is Fisher scoring and iterative reweighted least squares. At the heart of this package are the vector generalized linear and additive model (VGLM/VGAM) classes. VGLMs can be loosely thought of as multivariate GLMs. VGAMs are data-driven VGLMs that use smoothing. The book "Vector Generalized Linear and Additive Models: With an Implementation in R" (Yee, 2015) gives details of the statistical framework and the package. Currently only fixed-effects models are implemented. Many (100+) models and distributions are estimated by maximum likelihood estimation (MLE) or penalized MLE. The other classes are RR-VGLMs (reduced-rank VGLMs), quadratic RR-VGLMs, doubly constrained RR-VGLMs, quadratic RR-VGLMs, reduced-rank VGAMs, RCIMs (row-column interaction models)---these classes perform constrained and unconstrained quadratic ordination (CQO/UQO) models in ecology, as well as constrained additive ordination (CAO). Hauck-Donner effect detection is implemented. Note that these functions are subject to change; see the NEWS and ChangeLog files for latest changes.

pscl — by Simon Jackman, a year ago

Political Science Computational Laboratory

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching; seats-votes curves.

ks — by Tarn Duong, 5 months ago

Kernel Smoothing

Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018) .

parsnip — by Max Kuhn, 21 days ago

A Common API to Modeling and Analysis Functions

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', 'H2O', etc).

earth — by Stephen Milborrow, 5 months ago

Multivariate Adaptive Regression Splines

Build regression models using the techniques in Friedman's papers "Fast MARS" and "Multivariate Adaptive Regression Splines" . (The term "MARS" is trademarked and thus not used in the name of the package.)

glmmTMB — by Mollie Brooks, 5 months ago

Generalized Linear Mixed Models using Template Model Builder

Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.

caret — by Max Kuhn, 3 months ago

Classification and Regression Training

Misc functions for training and plotting classification and regression models.