All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

sped — 0.3

Multi-Gene Descent Probabilities

spedecon — 0.1

Smoothness-Penalized Deconvolution for Density Estimation Under Measurement Error

SPEDInstabR — 2.2

Estimation of the Relative Importance of Factors Affecting Species Distribution Based on Stability Concept

spEDM — 1.5

Spatial Empirical Dynamic Modeling

speech — 0.1.5

Legislative Speeches

speechbr — 2.0.0

Access the Speechs and Speaker's Informations of House of Representatives of Brazil

speedglm — 0.3-5

Fitting Linear and Generalized Linear Models to Large Data Sets

speedyBBT — 1.0

Efficient Bayesian Inference for the Bradley--Terry Model

speedycode — 0.3.0

Automate Code for Adding Labels, Recoding and Renaming Variables, and Converting ASCII Files

speedytax — 1.0.4

Rapidly Import Classifier Results into 'phyloseq'

spef — 1.0.9

Semiparametric Estimating Functions

speff2trial — 1.0.5

Semiparametric Efficient Estimation for a Two-Sample Treatment Effect

SPEI — 1.8.1

Calculation of the Standardized Precipitation-Evapotranspiration Index

spellcheckr — 0.1.2

Correct the Spelling of a Given Word in the English Language

spelling — 2.3.1

Tools for Spell Checking in R

spemd — 0.1-1

A Bi-Dimensional Implementation of the Empirical Mode Decomposition for Spatial Data

sperich — 1.5-9

Auxiliary Functions to Estimate Centers of Biodiversity

sperrorest — 3.0.5

Perform Spatial Error Estimation and Variable Importance Assessment

SpeTestNP — 1.1.0

Non-Parametric Tests of Parametric Specifications

SPEV — 1.0.0

Unsmoothed and Smoothed Penalized PCA using Nesterov Smoothing

spex — 0.7.1

Spatial Extent Tools

spfa — 1.0

Semi-Parametric Factor Analysis

spfda — 0.9.1

Function-on-Scalar Regression with Group-Bridge Penalty

spfilteR — 2.1.0

Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models

spFSR — 2.0.4

Feature Selection and Ranking via Simultaneous Perturbation Stochastic Approximation

spFW — 0.1.0

Hierarchical Spatial Finlay-Wilkinson Model

spGARCH — 0.2.3

Spatial ARCH and GARCH Models (spGARCH)

spgs — 1.0-4

Statistical Patterns in Genomic Sequences

spgwr — 0.6-37

Geographically Weighted Regression

spheredata — 0.1.2

Students' Performance Dataset in Physics Education Research (SPHERE)

sphereML — 0.1.0

Analyzing Students' Performance Dataset in Physics Education Research (SPHERE) using Machine Learning (ML)

SphereOptimize — 0.1.1

Optimization on a Unit Sphere

spherepc — 0.1.7

Spherical Principal Curves

sphereplot — 1.5.1

Spherical Plotting

spheresmooth — 0.1.3

Piecewise Geodesic Smoothing for Spherical Data

SphericalCubature — 1.5

Numerical Integration over Spheres and Balls in n-Dimensions; Multivariate Polar Coordinates

sphet — 2.1-1

Estimation of Spatial Autoregressive Models with and without Heteroskedastic Innovations

sphunif — 1.4.0

Uniformity Tests on the Circle, Sphere, and Hypersphere

SpiceFP — 0.1.2

Sparse Method to Identify Joint Effects of Functional Predictors

SPIChanges — 0.1.0

Improves the Interpretation of the Standardized Precipitation Index Under Changing Climate Conditions

spider — 1.5.0

Species Identity and Evolution in R

spiderbar — 0.2.5

Parse and Test Robots Exclusion Protocol Files and Rules

spidR — 1.0.2

Spider Knowledge Online

SPIGA — 1.0.0

Compute SPI Index using the Methods Genetic Algorithm and Maximum Likelihood

spikes — 1.1

Detecting Election Fraud from Irregularities in Vote-Share Distributions

spikeslab — 1.1.6

Prediction and Variable Selection Using Spike and Slab Regression

spikeSlabGAM — 1.1-20

Bayesian Variable Selection and Model Choice for Generalized Additive Mixed Models

Spillover — 0.1.1

Spillover/Connectedness Index Based on VAR Modelling

SPINA — 4.1.0

Structure Parameter Inference Approach

spINAR — 0.2.0

(Semi)Parametric Estimation and Bootstrapping of INAR Models

spinBayes — 0.2.2

Semi-Parametric Gene-Environment Interaction via Bayesian Variable Selection

spind — 2.2.1

Spatial Methods and Indices

spinifex — 0.3.8

Manual Tours, Manual Control of Dynamic Projections of Numeric Multivariate Data

spinner — 1.1.0

An Implementation of Graph Net Architecture Based on 'torch'

spinyReg — 0.1-0

Sparse Generative Model and Its EM Algorithm

spiralize — 1.1.0

Visualize Data on Spirals

spiritR — 0.1.1

Template for Clinical Trial Protocol

spiro — 0.2.3

Manage Data from Cardiopulmonary Exercise Testing

splancs — 2.01-45

Spatial and Space-Time Point Pattern Analysis

splash — 1.0.2

Simple Process-Led Algorithms for Simulating Habitats

spldv — 0.1.3

Spatial Models for Limited Dependent Variables

SPLICE — 1.1.2

Synthetic Paid Loss and Incurred Cost Experience (SPLICE) Simulator

splineCox — 0.0.3

A Two-Stage Estimation Approach to Cox Regression Using M-Spline Function

splines2 — 0.5.4

Regression Spline Functions and Classes

splinetree — 0.2.0

Longitudinal Regression Trees and Forests

Splinets — 1.5.1

Functional Data Analysis using Splines and Orthogonal Spline Bases

SPlit — 1.2

Split a Dataset for Training and Testing

splitfngr — 0.1.2

Combined Evaluation and Split Access of Functions

SplitGLM — 1.0.6

Split Generalized Linear Models

splithalf — 0.8.2

Calculate Task Split Half Reliability Estimates

splithalfr — 3.0.0

Estimate Split-Half Reliabilities

SplitKnockoff — 2.1

Split Knockoffs for Structural Sparsity

SplitReg — 1.0.3

Split Regularized Regression

splitSelect — 1.0.3

Best Split Selection Modeling for Low-Dimensional Data

SplitSplitPlot — 0.0.1

Analysis of Split-Split-Plot Experiments (Analise De Experimentos Em Parcela Subsubdividida)

splitstackshape — 1.4.8

Stack and Reshape Datasets After Splitting Concatenated Values

splitTools — 1.0.1

Tools for Data Splitting

splm — 1.6-5

Econometric Models for Spatial Panel Data

splmm — 1.2.0

Simultaneous Penalized Linear Mixed Effects Models

splot — 0.5.4

Simplified Plotting for Data Exploration

spls — 2.2-3

Sparse Partial Least Squares (SPLS) Regression and Classification

splus2R — 1.3-5

Supplemental S-PLUS Functionality in R

splusTimeDate — 2.5.8

Times and Dates from 'S-PLUS'

splusTimeSeries — 1.5.7

Time Series from 'S-PLUS'

splutil — 2022.6.20

Utility Functions for Common Base-R Problems Relating to Lists

spm — 1.2.2

Spatial Predictive Modeling

spm2 — 1.1.3

Spatial Predictive Modeling

spMaps — 0.5.0

Europe SpatialPolygonsDataFrame Builder

spMC — 0.3.15

Continuous-Lag Spatial Markov Chains

SPmlficmcm — 1.4

Semiparametric Maximum Likelihood Method for Interactions Gene-Environment in Case-Mother Control-Mother Designs

spmodel — 0.10.0

Spatial Statistical Modeling and Prediction

spmoran — 0.3.3

Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors

spnaf — 1.1.0

Spatial Network Autocorrelation for Flow Data

spNetwork — 0.4.4.6

Spatial Analysis on Network

SpNMF — 0.1.1

Supervised NMF

spnn — 1.2.1

Scale Invariant Probabilistic Neural Networks

spNNGP — 1.0.1

Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes

spocc — 1.2.3

Interface to Species Occurrence Data Sources

spOccupancy — 0.8.0

Single-Species, Multi-Species, and Integrated Spatial Occupancy Models

spoiler — 1.0.0

Blur 'HTML' Elements in 'Shiny' Applications Using 'Spoiler-Alert.js'

Next page