Split Regularized Regression

Functions for computing split regularized estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2019) . The approach fits linear regression models that split the set of covariates into groups. The optimal split of the variables into groups and the regularized estimation of the regression coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. The estimated coefficients are then pooled together to form the final fit.

Build Status CRAN_Status_Badge Downloads


This package provides functions for computing the split regularized regression estimators defined in Christidis, Lakshmanan, Smucler and Zamar (2019).

You can install the stable version on R CRAN.

install.packages('SplitReg', dependencies = TRUE)

You can install the development version from GitHub



# A small example
beta <- c(rep(5, 5), rep(0, 45))
Sigma <- matrix(0.5, 50, 50)
diag(Sigma) <- 1
x <- mvrnorm(50, mu = rep(0, 50), Sigma = Sigma)
y <- x %*% beta + rnorm(50)
fit <- cv.SplitReg(x, y, num_models=10) # Use 10 models
coefs <- predict(fit, type="coefficients")


This package is free and open source software, licensed under GPL (>= 2).


ensembleEN 1.1.2

  • Add new test, fix old ones, specially the objective function test.
  • Decrease default tolerance.

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


1.0.2 by Anthony Christidis, 2 years ago

Browse source code at https://github.com/cran/SplitReg

Authors: Anthony Christidis <[email protected]> , Ezequiel Smucler <[email protected]> , Ruben Zamar <[email protected]>

Documentation:   PDF Manual  

GPL (>= 2) license

Imports Rcpp

Suggests testthat, glmnet, MASS

Linking to Rcpp, RcppArmadillo

See at CRAN