All packages

· A · B · C · D · E · F · G · H · I · J · K · L · M · N · O · P · Q · R · S · T · U · V · W · X · Y · Z ·

sreg — 1.0.0

Stratified Randomized Experiments

sregsurvey — 0.1.3

Semiparametric Model-Assisted Estimation in Finite Populations

srlars — 1.0.1

Split Robust Least Angle Regression

srlTS — 0.1.1

Sparsity-Ranked Lasso for Time Series

srm — 0.4-26

Structural Equation Modeling for the Social Relations Model

sRNAGenetic — 0.1.0

Analysis of Small RNA Expression Changes in Hybrid Plants

srp — 1.2.0

Smooth-Rough Partitioning of the Regression Coefficients

srppp — 1.0.1

Read the Swiss Register of Plant Protection Products

SRS — 0.2.3

Scaling with Ranked Subsampling

srt — 1.0.4

Read Subtitle Files as Tabular Data

SRTsim — 0.99.7

Simulator for Spatially Resolved Transcriptomics

SRTtools — 1.2.0

Adjust Srt File to Get Better Experience when Watching Movie

srvyr — 1.3.0

'dplyr'-Like Syntax for Summary Statistics of Survey Data

ss3sim — 1.0.3

Fisheries Stock Assessment Simulation Testing with Stock Synthesis

ssaBSS — 0.1.1

Stationary Subspace Analysis

ssanv — 1.1

Sample Size Adjusted for Nonadherence or Variability of Input Parameters

SSBtools — 1.5.5

Statistics Norway's Miscellaneous Tools

ssc — 2.1-0

Semi-Supervised Classification Methods

sscor — 0.2

Robust Correlation Estimation and Testing Based on Spatial Signs

ssd4mosaic — 1.0.1

Web Application for the SSD Module of the MOSAIC Platform

ssddata — 1.0.0

Species Sensitivity Distribution Data

SSDforR — 1.5.35

Functions to Analyze Single System Data

ssdGSA — 0.1.1

Single Sample Directional Gene Set Analysis

SSDM — 0.2.9

Stacked Species Distribution Modelling

sSDR — 1.2.0

Tools Developed for Structured Sufficient Dimension Reduction (sSDR)

ssdtools — 2.1.0

Species Sensitivity Distributions

sse — 0.7-17

Sample Size Estimation

SSEparser — 0.1.0

Parse Server-Sent Events

ssev — 0.1.0

Sample Size Computation for Fixed N with Optimal Reward

ssfa — 1.2.2

Spatial Stochastic Frontier Analysis

ssfit — 1.2

Fitting of Parametric Models using Summary Statistics

SSGL — 1.0

Spike-and-Slab Group Lasso for Group-Regularized Generalized Linear Models

ssgraph — 1.15

Bayesian Graph Structure Learning using Spike-and-Slab Priors

ssh — 0.9.3

Secure Shell (SSH) Client for R

SSHAARP — 1.1.0

Searching Shared HLA Amino Acid Residue Prevalence

Sshaped — 1.1

Nonparametric, Tuning-Free Estimation of S-Shaped Functions

sship — 0.9.0

Tool for Secure Shipment of Content

ssifs — 1.0.2

Stochastic Search Inconsistency Factor Selection

SSIMmap — 0.1.1

The Structural Similarity Index Measure for Maps

ssimparser — 0.1.1

Standard Schedules Information Parser

ssize.fdr — 1.3

Sample Size Calculations for Microarray Experiments

ssizeRNA — 1.3.2

Sample Size Calculation for RNA-Seq Experimental Design

SSLR — 0.9.3.3

Semi-Supervised Classification, Regression and Clustering Methods

SSM — 1.0.1

Fit and Analyze Smooth Supersaturated Models

ssmn — 1.1

Skew Scale Mixtures of Normal Distributions

ssmodels — 1.0.1

Sample Selection Models

ssMousetrack — 1.1.6

Bayesian State-Space Modeling of Mouse-Tracking Experiments via Stan

ssMRCD — 1.1.0

Spatially Smoothed MRCD Estimator

ssmrob — 1.0

Robust Estimation and Inference in Sample Selection Models

ssmsn — 0.2.0

Scale-Shape Mixtures of Skew-Normal Distributions

ssMutPA — 0.1.2

Single-Sample Mutation-Based Pathway Analysis

SSN2 — 0.2.1

Spatial Modeling on Stream Networks

SSNbayes — 0.0.3

Bayesian Spatio-Temporal Analysis in Stream Networks

SSNbler — 1.0.1

Assemble 'SSN' Objects

SSOSVM — 0.2.1

Stream Suitable Online Support Vector Machines

SSP — 1.0.1

Simulated Sampling Procedure for Community Ecology

SSplots — 0.1.2

Stock Status Plots (SSPs)

sspse — 1.1.0-2

Estimating Hidden Population Size using Respondent Driven Sampling Data

ssr — 0.1.1

Semi-Supervised Regression Methods

SSRA — 0.1-1

Sakai Sequential Relation Analysis

SSrat — 1.1

Two-Dimensional Sociometric Status Determination with Rating Scales

ssrm.logmer — 0.1

Sample Size Determination for Longitudinal Designs with Binary Outcome

SSRMST — 0.1.1

Sample Size Calculation using Restricted Mean Survival Time

ssrn — 0.1.0

Scan Statistics for Railway Network

SSRTcalc — 0.3.3

Easy SSRT Calculation

sss — 0.2.2

Import Files in the Triple-s (Standard Survey Structure) Format

sssc — 1.0.0

Same Species Sample Contamination Detection

SSsimple — 0.6.6

State Space Models

Sstack — 1.0.1

Bootstrap Stacking of Random Forest Models for Heterogeneous Data

sstvars — 1.0.1

Toolkit for Reduced Form and Structural Smooth Transition Vector Autoregressive Models

SSVS — 2.0.0

Functions for Stochastic Search Variable Selection (SSVS)

ssw — 0.2.1

Striped Smith-Waterman Algorithm for Sequence Alignment using SIMD

ssym — 1.5.8

Fitting Semi-Parametric log-Symmetric Regression Models

st — 1.2.7

Shrinkage t Statistic and Correlation-Adjusted t-Score

sta — 0.1.7

Seasonal Trend Analysis for Time Series Imagery in R

stabiliser — 1.0.6

Stabilising Variable Selection

stability — 0.6.0

Stability Analysis of Genotype by Environment Interaction (GEI)

StabilityApp — 0.1.0

Stability Analysis App for GEI in Multi-Environment Trials

StabilizedRegression — 1.1

Stabilizing Regression and Variable Selection

stabilo — 0.1.1

Stabilometric Signal Quantification

stable — 1.1.6

Probability Functions and Generalized Regression Models for Stable Distributions

stabledist — 0.7-2

Stable Distribution Functions

StableEstim — 2.3

Estimate the Four Parameters of Stable Laws using Different Methods

stableGR — 1.2

A Stable Gelman-Rubin Diagnostic for Markov Chain Monte Carlo

stablelearner — 0.1-5

Stability Assessment of Statistical Learning Methods

stablespec — 0.3.0

Stable Specification Search in Structural Equation Models

stabm — 1.2.2

Stability Measures for Feature Selection

stabs — 0.6-4

Stability Selection with Error Control

staccuracy — 0.2.0

Standardized Accuracy and Other Model Performance Metrics

stackgbm — 0.1.0

Stacked Gradient Boosting Machines

StackImpute — 0.1.0

Tools for Analysis of Stacked Multiple Imputations

stacking — 0.1.3

Building Predictive Models with Stacking

stacks — 1.0.5

Tidy Model Stacking

stacomiR — 0.6.1

Fish Migration Monitoring

stacomirtools — 0.6.0.1

Connection Class for Package stacomiR

stagedtrees — 2.3.0

Staged Event Trees

stagePop — 1.1-2

Modelling the Population Dynamics of a Stage-Structured Species in Continuous Time

staggered — 1.2.1

Efficient Estimation Under Staggered Treatment Timing

StakeholderAnalysis — 1.2

Measuring Stakeholder Influence

StAMPP — 1.6.3

Statistical Analysis of Mixed Ploidy Populations

Next page