Found 142 packages in 0.04 seconds
Visualization and Imputation of Missing Values
Provides methods for imputation and visualization of
missing values. It includes graphical tools to explore the amount, structure
and patterns of missing and/or imputed values, supporting exploratory
data analysis and helping to investigate potential missingness mechanisms
(details in Alfons, Templ and Filzmoser,
R Unit Test Framework
R functions implementing a standard Unit Testing framework, with additional code inspection and report generation tools.
Estimation of Indicators on Social Exclusion and Poverty
Estimation of indicators on social exclusion and poverty, as well as Pareto tail modeling for empirical income distributions.
Display and Analyze ROC Curves
Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.
"Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al.
Methods for Cluster analysis. Much extended the original from Peter Rousseeuw, Anja Struyf and Mia Hubert, based on Kaufman and Rousseeuw (1990) "Finding Groups in Data".
Extensions of Package 'distr'
Extends package 'distr' by functionals, distances, and conditional distributions.
Compositional Data Analysis
Methods for analysis of compositional data including robust
methods (
Various Coefficients of Interrater Reliability and Agreement
Coefficients of Interrater Reliability and Agreement for quantitative, ordinal and nominal data: ICC, Finn-Coefficient, Robinson's A, Kendall's W, Cohen's Kappa, ...
Clustering of Weighted Data
Clusters state sequences and weighted data. It provides an optimized weighted PAM algorithm as well as functions for aggregating replicated cases, computing cluster quality measures for a range of clustering solutions, sequence analysis typology validation using parametric bootstraps and plotting (fuzzy) clusters of state sequences. It further provides a fuzzy and crisp CLARA algorithm to cluster large database with sequence analysis, and a methodological framework for Robustness Assessment of Regressions using Cluster Analysis Typologies (RARCAT).
Statistical Disclosure Control Methods for Anonymization of Data and Risk Estimation
Data from statistical agencies and other institutions are mostly
confidential. This package, introduced in Templ, Kowarik and Meindl (2017)