Found 1744 packages in 0.01 seconds
Import and Export 'SPSS', 'Stata' and 'SAS' Files
Import foreign statistical formats into R via the embedded 'ReadStat' C library, < https://github.com/WizardMac/ReadStat>.
Data Source Catalogues Online for Southern Ocean Ecosystem Research
Obtains lists of files of remote sensing collections for Southern Ocean surface
properties. Commonly used data sources of sea surface temperature, sea ice concentration, and
altimetry products such as sea surface height and sea surface currents are cached in object storage
on the Pawsey Supercomputing Research Centre facility. Patterns of working to retrieve data from these object storage
catalogues are described. The catalogues include complete collections of datasets Reynolds et al. (2008)
"NOAA Optimum Interpolation Sea Surface Temperature (OISST) Analysis, Version 2.1"
Dynamic Generation of Scientific Reports
The RSP markup language makes any text-based document come alive. RSP provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. 'Today's date is <%=Sys.Date()%>'. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. Functions rstring() and rcat() make it easy to process RSP strings, rsource() sources an RSP file as it was an R script, while rfile() compiles it (even online) into its final output format, e.g. rfile('report.tex.rsp') generates 'report.pdf' and rfile('report.md.rsp') generates 'report.html'. RSP is ideal for self-contained scientific reports and R package vignettes. It's easy to use - if you know how to write an R script, you'll be up and running within minutes.
3D Visualization Using OpenGL
Provides medium to high level functions for 3D interactive graphics, including functions modelled on base graphics (plot3d(), etc.) as well as functions for constructing representations of geometric objects (cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.
Manage Massive Matrices with Shared Memory and Memory-Mapped Files
Create, store, access, and manipulate massive matrices. Matrices are allocated to shared memory and may use memory-mapped files. Packages 'biganalytics', 'bigtabulate', 'synchronicity', and 'bigalgebra' provide advanced functionality.
Lightweight and Feature Complete Unit Testing Framework
Provides a lightweight (zero-dependency) and easy to use unit testing framework. Main features: install tests with the package. Test results are treated as data that can be stored and manipulated. Test files are R scripts interspersed with test commands, that can be programmed over. Fully automated build-install-test sequence for packages. Skip tests when not run locally (e.g. on CRAN). Flexible and configurable output printing. Compare computed output with output stored with the package. Run tests in parallel. Extensible by other packages. Report side effects.
A S3 Class for Vectors of 64bit Integers
Package 'bit64' provides serializable S3 atomic 64bit (signed) integers. These are useful for handling database keys and exact counting in +-2^63. WARNING: do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double, e.g. integer64 + double => integer64. Class integer64 can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as 'match' and 'order' support inter- active data exploration and manipulation and optionally leverage caching.
'Rcpp' Integration for the 'Armadillo' Templated Linear Algebra Library
'Armadillo' is a templated C++ linear algebra library aiming towards a good balance between speed and ease of use. It provides high-level syntax and functionality deliberately similar to Matlab. It is useful for algorithm development directly in C++, or quick conversion of research code into production environments. It provides efficient classes for vectors, matrices and cubes where dense and sparse matrices are supported. Integer, floating point and complex numbers are supported. A sophisticated expression evaluator (based on template meta-programming) automatically combines several operations to increase speed and efficiency. Dynamic evaluation automatically chooses optimal code paths based on detected matrix structures. Matrix decompositions are provided through integration with LAPACK, or one of its high performance drop-in replacements (such as 'MKL' or 'OpenBLAS'). It can automatically use 'OpenMP' multi-threading (parallelisation) to speed up computationally expensive operations. The 'RcppArmadillo' package includes the header files from the 'Armadillo' library; users do not need to install 'Armadillo' itself in order to use 'RcppArmadillo'. Starting from release 15.0.0, the minimum compilation standard is C++14 so 'Armadillo' version 14.6.3 is included as a fallback when an R package forces the C++11 standard. Package authors should set a '#define' to select the 'current' version, or select the 'legacy' version (also chosen as default) if they must. See 'GitHub issue #475' for details. Since release 7.800.0, 'Armadillo' is licensed under Apache License 2; previous releases were under licensed as MPL 2.0 from version 3.800.0 onwards and LGPL-3 prior to that; 'RcppArmadillo' (the 'Rcpp' bindings/bridge to Armadillo) is licensed under the GNU GPL version 2 or later, as is the rest of 'Rcpp'.
'Rcpp' Integration for the 'Eigen' Templated Linear Algebra Library
R and 'Eigen' integration using 'Rcpp'. 'Eigen' is a C++ template library for linear algebra: matrices, vectors, numerical solvers and related algorithms. It supports dense and sparse matrices on integer, floating point and complex numbers, decompositions of such matrices, and solutions of linear systems. Its performance on many algorithms is comparable with some of the best implementations based on 'Lapack' and level-3 'BLAS'. The 'RcppEigen' package includes the header files from the 'Eigen' C++ template library. Thus users do not need to install 'Eigen' itself in order to use 'RcppEigen'. Since version 3.1.1, 'Eigen' is licensed under the Mozilla Public License (version 2); earlier version were licensed under the GNU LGPL version 3 or later. 'RcppEigen' (the 'Rcpp' bindings/bridge to 'Eigen') is licensed under the GNU GPL version 2 or later, as is the rest of 'Rcpp'.
Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files
Provide R functions to read/write/format Excel 2007 and Excel 97/2000/XP/2003 file formats.