Found 1795 packages in 0.01 seconds
Access and Work with HCUP Resources and Datasets
A comprehensive R package for accessing and working with publicly available and free resources from the Agency for Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP). The package provides streamlined access to HCUP's Clinical Classifications Software Refined (CCSR) mapping files and Summary Trend Tables, enabling researchers and analysts to efficiently map ICD-10-CM diagnosis codes and ICD-10-PCS procedure codes to CCSR categories and access HCUP statistical reports. Key features include: direct download from HCUP website, multiple output formats (long/wide/default), cross-classification support, version management, citation generation, and intelligent caching. The package does not redistribute HCUP data files but facilitates direct download from the official HCUP website, ensuring users always have access to the latest versions and maintain compliance with HCUP data use policies. This package only accesses free public tools and reports; it does NOT access HCUP databases (NIS, KID, SID, NEDS, etc.) that require purchase. For more information, see < https://hcup-us.ahrq.gov/>.
Read and write PNG images
This package provides an easy and simple way to read, write and display bitmap images stored in the PNG format. It can read and write both files and in-memory raw vectors.
Spatial Data Analysis
Methods for spatial data analysis with vector (points, lines, polygons) and raster (grid) data. Methods for vector data include geometric operations such as intersect and buffer. Raster methods include local, focal, global, zonal and geometric operations. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction, including with satellite remote sensing data. Processing of very large files is supported. See the manual and tutorials on < https://rspatial.org/> to get started.
Import and Export 'SPSS', 'Stata' and 'SAS' Files
Import foreign statistical formats into R via the embedded 'ReadStat' C library, < https://github.com/WizardMac/ReadStat>.
Cache and Retrieve Computation Results
Easily cache and retrieve computation results. The package works seamlessly across interactive R sessions, R scripts and Rmarkdown documents.
Data Source Catalogues Online for Southern Ocean Ecosystem Research
Obtains lists of files of remote sensing collections for Southern Ocean surface
properties. Commonly used data sources of sea surface temperature, sea ice concentration, and
altimetry products such as sea surface height and sea surface currents are cached in object storage
on the Pawsey Supercomputing Research Centre facility. Patterns of working to retrieve data from these object storage
catalogues are described. The catalogues include complete collections of datasets Reynolds et al. (2008)
"NOAA Optimum Interpolation Sea Surface Temperature (OISST) Analysis, Version 2.1"
Dynamic Generation of Scientific Reports
The RSP markup language makes any text-based document come alive. RSP provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. 'Today's date is <%=Sys.Date()%>'. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. Functions rstring() and rcat() make it easy to process RSP strings, rsource() sources an RSP file as it was an R script, while rfile() compiles it (even online) into its final output format, e.g. rfile('report.tex.rsp') generates 'report.pdf' and rfile('report.md.rsp') generates 'report.html'. RSP is ideal for self-contained scientific reports and R package vignettes. It's easy to use - if you know how to write an R script, you'll be up and running within minutes.
3D Visualization Using OpenGL
Provides medium to high level functions for 3D interactive graphics, including functions modelled on base graphics (plot3d(), etc.) as well as functions for constructing representations of geometric objects (cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.
Lightweight and Feature Complete Unit Testing Framework
Provides a lightweight (zero-dependency) and easy to use unit testing framework. Main features: install tests with the package. Test results are treated as data that can be stored and manipulated. Test files are R scripts interspersed with test commands, that can be programmed over. Fully automated build-install-test sequence for packages. Skip tests when not run locally (e.g. on CRAN). Flexible and configurable output printing. Compare computed output with output stored with the package. Run tests in parallel. Extensible by other packages. Report side effects.
Manage Massive Matrices with Shared Memory and Memory-Mapped Files
Create, store, access, and manipulate massive matrices. Matrices are allocated to shared memory and may use memory-mapped files. Packages 'biganalytics', 'bigtabulate', 'synchronicity', and 'bigalgebra' provide advanced functionality.