Found 1688 packages in 0.15 seconds
Record 'HTTP' Calls to Disk
Record test suite 'HTTP' requests and replays them during future runs. A port of the Ruby gem of the same name (< https://github.com/vcr/vcr/>). Works by hooking into the 'webmockr' R package for matching 'HTTP' requests by various rules ('HTTP' method, 'URL', query parameters, headers, body, etc.), and then caching real 'HTTP' responses on disk in 'cassettes'. Subsequent 'HTTP' requests matching any previous requests in the same 'cassette' use a cached 'HTTP' response.
Cache and Retrieve Computation Results
Easily cache and retrieve computation results. The package works seamlessly across interactive R sessions, R scripts and Rmarkdown documents.
Import and Export 'SPSS', 'Stata' and 'SAS' Files
Import foreign statistical formats into R via the embedded 'ReadStat' C library, < https://github.com/WizardMac/ReadStat>.
Data Source Catalogues Online for Southern Ocean Ecosystem Research
Obtains lists of files of remote sensing collections for Southern Ocean surface
properties. Commonly used data sources of sea surface temperature, sea ice concentration, and
altimetry products such as sea surface height and sea surface currents are cached in object storage
on the Pawsey Supercomputing Research Centre facility. Patterns of working to retrieve data from these object storage
catalogues are described. The catalogues include complete collections of datasets Reynolds et al. (2008)
"NOAA Optimum Interpolation Sea Surface Temperature (OISST) Analysis, Version 2.1"
Dynamic Generation of Scientific Reports
The RSP markup language makes any text-based document come alive. RSP provides a powerful markup for controlling the content and output of LaTeX, HTML, Markdown, AsciiDoc, Sweave and knitr documents (and more), e.g. 'Today's date is <%=Sys.Date()%>'. Contrary to many other literate programming languages, with RSP it is straightforward to loop over mixtures of code and text sections, e.g. in month-by-month summaries. RSP has also several preprocessing directives for incorporating static and dynamic contents of external files (local or online) among other things. Functions rstring() and rcat() make it easy to process RSP strings, rsource() sources an RSP file as it was an R script, while rfile() compiles it (even online) into its final output format, e.g. rfile('report.tex.rsp') generates 'report.pdf' and rfile('report.md.rsp') generates 'report.html'. RSP is ideal for self-contained scientific reports and R package vignettes. It's easy to use - if you know how to write an R script, you'll be up and running within minutes.
3D Visualization Using OpenGL
Provides medium to high level functions for 3D interactive graphics, including functions modelled on base graphics (plot3d(), etc.) as well as functions for constructing representations of geometric objects (cube3d(), etc.). Output may be on screen using OpenGL, or to various standard 3D file formats including WebGL, PLY, OBJ, STL as well as 2D image formats, including PNG, Postscript, SVG, PGF.
Spatial Data Analysis
Methods for spatial data analysis with vector (points, lines, polygons) and raster (grid) data. Methods for vector data include geometric operations such as intersect and buffer. Raster methods include local, focal, global, zonal and geometric operations. The predict and interpolate methods facilitate the use of regression type (interpolation, machine learning) models for spatial prediction, including with satellite remote sensing data. Processing of very large files is supported. See the manual and tutorials on < https://rspatial.org/> to get started. 'terra' replaces the 'raster' package ('terra' can do more, and it is faster and easier to use).
Manage Massive Matrices with Shared Memory and Memory-Mapped Files
Create, store, access, and manipulate massive matrices. Matrices are allocated to shared memory and may use memory-mapped files. Packages 'biganalytics', 'bigtabulate', 'synchronicity', and 'bigalgebra' provide advanced functionality.
Lightweight and Feature Complete Unit Testing Framework
Provides a lightweight (zero-dependency) and easy to use unit testing framework. Main features: install tests with the package. Test results are treated as data that can be stored and manipulated. Test files are R scripts interspersed with test commands, that can be programmed over. Fully automated build-install-test sequence for packages. Skip tests when not run locally (e.g. on CRAN). Flexible and configurable output printing. Compare computed output with output stored with the package. Run tests in parallel. Extensible by other packages. Report side effects.
A S3 Class for Vectors of 64bit Integers
Package 'bit64' provides serializable S3 atomic 64bit (signed) integers. These are useful for handling database keys and exact counting in +-2^63. WARNING: do not use them as replacement for 32bit integers, integer64 are not supported for subscripting by R-core and they have different semantics when combined with double, e.g. integer64 + double => integer64. Class integer64 can be used in vectors, matrices, arrays and data.frames. Methods are available for coercion from and to logicals, integers, doubles, characters and factors as well as many elementwise and summary functions. Many fast algorithmic operations such as 'match' and 'order' support inter- active data exploration and manipulation and optionally leverage caching.