Found 973 packages in 0.02 seconds
Smooth Survival Models, Including Generalized Survival Models
R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth
Classes for Relational Data
Tools to create and modify network objects. The network class can represent a range of relational data types, and supports arbitrary vertex/edge/graph attributes.
Fast R and C++ Access to NIfTI Images
Provides very fast read and write access to images stored in the NIfTI-1, NIfTI-2 and ANALYZE-7.5 formats, with seamless synchronisation of in-memory image objects between compiled C and interpreted R code. Also provides a simple image viewer, and a C/C++ API that can be used by other packages. Not to be confused with 'RNiftyReg', which performs image registration and applies spatial transformations.
Derivation of Regression-Based Normative Data
Normative data are often used to estimate the relative position of a raw test score in the population. This package allows for deriving regression-based normative data. It includes functions that enable the fitting of regression models for the mean and residual (or variance) structures, test the model assumptions, derive the normative data in the form of normative tables or automatic scoring sheets, and estimate confidence intervals for the norms. This package accompanies the book Van der Elst, W. (2024). Regression-based normative data for psychological assessment. A hands-on approach using R. Springer Nature.
R Code for Mark Analysis
An interface to the software package MARK that constructs input files for MARK and extracts the output. MARK was developed by Gary White and is freely available at < http://www.phidot.org/software/mark/downloads/> but is not open source.
Efficient Plotting of Large-Sized Data
A tool to plot data with a large sample size using 'shiny' and 'plotly'. Relatively small samples are obtained from the original data using a specific algorithm. The samples are updated according to a user-defined x range. Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost (2022) < https://github.com/predict-idlab/plotly-resampler>.
Compositional Data Analysis
Provides functions for the consistent analysis of compositional data (e.g. portions of substances) and positive numbers (e.g. concentrations) in the way proposed by J. Aitchison and V. Pawlowsky-Glahn.
Flexible Co-Data Learning for High-Dimensional Prediction
Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties.
The multi-group penalties correspond to groups of covariates defined by (multiple) co-data sources.
Group hyperparameters are estimated with an empirical Bayes method of moments, penalised with an extra level of hyper shrinkage.
Various types of hyper shrinkage may be used for various co-data.
Co-data may be continuous or categorical.
The method accommodates inclusion of unpenalised covariates, posterior selection of covariates and multiple data types.
The model fit is used to predict for new samples.
The name 'ecpc' stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection.
See Van Nee et al. (2020)
Analyzing Data with Cellwise Outliers
Tools for detecting cellwise outliers and robust methods to analyze
data which may contain them. Contains the implementation of the algorithms described in
Rousseeuw and Van den Bossche (2018)
Functions for Optimal Matching
Distance based bipartite matching using minimum cost flow, oriented
to matching of treatment and control groups in observational studies ('Hansen'
and 'Klopfer' 2006