Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2186 packages in 0.06 seconds

shinystan — by Jonah Gabry, 4 years ago

Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models

A graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the 'Shiny' web application framework from 'RStudio' and works with the output of MCMC programs written in any programming language (and has extended functionality for 'Stan' models fit using the 'rstan' and 'rstanarm' packages).

clustree — by Luke Zappia, 2 years ago

Visualise Clusterings at Different Resolutions

Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.

visdat — by Nicholas Tierney, 3 years ago

Preliminary Visualisation of Data

Create preliminary exploratory data visualisations of an entire dataset to identify problems or unexpected features using 'ggplot2'.

mclust — by Luca Scrucca, a year ago

Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation

Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference.

cowplot — by Claus O. Wilke, 3 months ago

Streamlined Plot Theme and Plot Annotations for 'ggplot2'

Provides various features that help with creating publication-quality figures with 'ggplot2', such as a set of themes, functions to align plots and arrange them into complex compound figures, and functions that make it easy to annotate plots and or mix plots with images. The package was originally written for internal use in the Wilke lab, hence the name (Claus O. Wilke's plot package). It has also been used extensively in the book Fundamentals of Data Visualization.

ggpubr — by Alboukadel Kassambara, 4 months ago

'ggplot2' Based Publication Ready Plots

The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

ggdensity — by James Otto, 3 years ago

Interpretable Bivariate Density Visualization with 'ggplot2'

The 'ggplot2' package provides simple functions for visualizing contours of 2-d kernel density estimates. 'ggdensity' implements several additional density estimators as well as more interpretable visualizations based on highest density regions instead of the traditional height of the estimated density surface.

graphlayouts — by David Schoch, 9 months ago

Additional Layout Algorithms for Network Visualizations

Several new layout algorithms to visualize networks are provided which are not part of 'igraph'. Most are based on the concept of stress majorization by Gansner et al. (2004) . Some more specific algorithms allow the user to emphasize hidden group structures in networks or focus on specific nodes.

ROCit — by Md Riaz Ahmed Khan, a year ago

Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

canvasXpress — by Connie Brett, 3 months ago

Visualization Package for CanvasXpress in R

Enables creation of visualizations using the CanvasXpress framework in R. CanvasXpress is a standalone JavaScript library for reproducible research with complete tracking of data and end-user modifications stored in a single PNG image that can be played back. See < https://www.canvasxpress.org> for more information.