Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1883 packages in 0.14 seconds

beanplot — by Peter Kampstra, 3 years ago

Visualization via Beanplots (Like Boxplot/Stripchart/Violin Plot)

Plots univariate comparison graphs, an alternative to boxplot/stripchart/violin plot.

candisc — by Michael Friendly, 6 months ago

Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis

Functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA' design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The 'candisc' package generalizes this to higher-way 'MANOVA' designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative.

ggpubr — by Alboukadel Kassambara, 2 years ago

'ggplot2' Based Publication Ready Plots

The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

plotfunctions — by Jacolien van Rij, 5 years ago

Various Functions to Facilitate Visualization of Data and Analysis

When analyzing data, plots are a helpful tool for visualizing data and interpreting statistical models. This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions. Note: Most of the functions were part of the package 'itsadug', which is now split in two packages: 1. the package 'itsadug', which contains the core functions for visualizing and evaluating nonlinear regression models, and 2. the package 'plotfunctions', which contains more general plot functions.

ggraph — by Thomas Lin Pedersen, 8 months ago

An Implementation of Grammar of Graphics for Graphs and Networks

The grammar of graphics as implemented in ggplot2 is a poor fit for graph and network visualizations due to its reliance on tabular data input. ggraph is an extension of the ggplot2 API tailored to graph visualizations and provides the same flexible approach to building up plots layer by layer.

naniar — by Nicholas Tierney, 9 months ago

Data Structures, Summaries, and Visualisations for Missing Data

Missing values are ubiquitous in data and need to be explored and handled in the initial stages of analysis. 'naniar' provides data structures and functions that facilitate the plotting of missing values and examination of imputations. This allows missing data dependencies to be explored with minimal deviation from the common work patterns of 'ggplot2' and tidy data. The work is fully discussed at Tierney & Cook (2023) .

lintr — by Michael Chirico, 8 months ago

A 'Linter' for R Code

Checks adherence to a given style, syntax errors and possible semantic issues. Supports on the fly checking of R code edited with 'RStudio IDE', 'Emacs', 'Vim', 'Sublime Text', 'Atom' and 'Visual Studio Code'.

arulesViz — by Michael Hahsler, 7 months ago

Visualizing Association Rules and Frequent Itemsets

Extends package 'arules' with various visualization techniques for association rules and itemsets. The package also includes several interactive visualizations for rule exploration. Michael Hahsler (2017) .

pcutils — by Chen Peng, 5 months ago

Some Useful Functions for Statistics and Visualization

Offers a range of utilities and functions for everyday programming tasks. 1.Data Manipulation. Such as grouping and merging, column splitting, and character expansion. 2.File Handling. Read and convert files in popular formats. 3.Plotting Assistance. Helpful utilities for generating color palettes, validating color formats, and adding transparency. 4.Statistical Analysis. Includes functions for pairwise comparisons and multiple testing corrections, enabling perform statistical analyses with ease. 5.Graph Plotting, Provides efficient tools for creating doughnut plot and multi-layered doughnut plot; Venn diagrams, including traditional Venn diagrams, upset plots, and flower plots; Simplified functions for creating stacked bar plots, or a box plot with alphabets group for multiple comparison group.

epicontacts — by Finlay Campbell, 7 months ago

Handling, Visualisation and Analysis of Epidemiological Contacts

A collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.