Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 2008 packages in 0.03 seconds

clustree — by Luke Zappia, a year ago

Visualise Clusterings at Different Resolutions

Deciding what resolution to use can be a difficult question when approaching a clustering analysis. One way to approach this problem is to look at how samples move as the number of clusters increases. This package allows you to produce clustering trees, a visualisation for interrogating clusterings as resolution increases.

mclust — by Luca Scrucca, a year ago

Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation

Gaussian finite mixture models fitted via EM algorithm for model-based clustering, classification, and density estimation, including Bayesian regularization, dimension reduction for visualisation, and resampling-based inference.

cowplot — by Claus O. Wilke, a year ago

Streamlined Plot Theme and Plot Annotations for 'ggplot2'

Provides various features that help with creating publication-quality figures with 'ggplot2', such as a set of themes, functions to align plots and arrange them into complex compound figures, and functions that make it easy to annotate plots and or mix plots with images. The package was originally written for internal use in the Wilke lab, hence the name (Claus O. Wilke's plot package). It has also been used extensively in the book Fundamentals of Data Visualization.

shapviz — by Michael Mayer, 3 months ago

SHAP Visualizations

Visualizations for SHAP (SHapley Additive exPlanations), such as waterfall plots, force plots, various types of importance plots, dependence plots, and interaction plots. These plots act on a 'shapviz' object created from a matrix of SHAP values and a corresponding feature dataset. Wrappers for the R packages 'xgboost', 'lightgbm', 'fastshap', 'shapr', 'h2o', 'treeshap', 'DALEX', and 'kernelshap' are added for convenience. By separating visualization and computation, it is possible to display factor variables in graphs, even if the SHAP values are calculated by a model that requires numerical features. The plots are inspired by those provided by the 'shap' package in Python, but there is no dependency on it.

graphlayouts — by David Schoch, 3 months ago

Additional Layout Algorithms for Network Visualizations

Several new layout algorithms to visualize networks are provided which are not part of 'igraph'. Most are based on the concept of stress majorization by Gansner et al. (2004) . Some more specific algorithms allow the user to emphasize hidden group structures in networks or focus on specific nodes.

ROCit — by Md Riaz Ahmed Khan, a year ago

Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

epicontacts — by Finlay Campbell, a year ago

Handling, Visualisation and Analysis of Epidemiological Contacts

A collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.

ggpubr — by Alboukadel Kassambara, 2 years ago

'ggplot2' Based Publication Ready Plots

The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

canvasXpress — by Connie Brett, 8 days ago

Visualization Package for CanvasXpress in R

Enables creation of visualizations using the CanvasXpress framework in R. CanvasXpress is a standalone JavaScript library for reproducible research with complete tracking of data and end-user modifications stored in a single PNG image that can be played back. See < https://www.canvasxpress.org> for more information.

vpc — by Ron Keizer, 4 years ago

Create Visual Predictive Checks

Visual predictive checks are a commonly used diagnostic plot in pharmacometrics, showing how certain statistics (percentiles) for observed data compare to those same statistics for data simulated from a model. The package can generate VPCs for continuous, categorical, censored, and (repeated) time-to-event data.