Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1953 packages in 0.01 seconds

ROCit — by Md Riaz Ahmed Khan, 9 months ago

Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

epicontacts — by Finlay Campbell, 10 months ago

Handling, Visualisation and Analysis of Epidemiological Contacts

A collection of tools for representing epidemiological contact data, composed of case line lists and contacts between cases. Also contains procedures for data handling, interactive graphics, and statistics.

ggpubr — by Alboukadel Kassambara, 2 years ago

'ggplot2' Based Publication Ready Plots

The 'ggplot2' package is excellent and flexible for elegant data visualization in R. However the default generated plots requires some formatting before we can send them for publication. Furthermore, to customize a 'ggplot', the syntax is opaque and this raises the level of difficulty for researchers with no advanced R programming skills. 'ggpubr' provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

canvasXpress — by Connie Brett, 8 months ago

Visualization Package for CanvasXpress in R

Enables creation of visualizations using the CanvasXpress framework in R. CanvasXpress is a standalone JavaScript library for reproducible research with complete tracking of data and end-user modifications stored in a single PNG image that can be played back. See < https://www.canvasxpress.org> for more information.

vpc — by Ron Keizer, 4 years ago

Create Visual Predictive Checks

Visual predictive checks are a commonly used diagnostic plot in pharmacometrics, showing how certain statistics (percentiles) for observed data compare to those same statistics for data simulated from a model. The package can generate VPCs for continuous, categorical, censored, and (repeated) time-to-event data.

likert — by Jason Bryer, 8 years ago

Analysis and Visualization Likert Items

An approach to analyzing Likert response items, with an emphasis on visualizations. The stacked bar plot is the preferred method for presenting Likert results. Tabular results are also implemented along with density plots to assist researchers in determining whether Likert responses can be used quantitatively instead of qualitatively. See the likert(), summary.likert(), and plot.likert() functions to get started.

beanplot — by Peter Kampstra, 3 years ago

Visualization via Beanplots (Like Boxplot/Stripchart/Violin Plot)

Plots univariate comparison graphs, an alternative to boxplot/stripchart/violin plot.

candisc — by Michael Friendly, 9 months ago

Visualizing Generalized Canonical Discriminant and Canonical Correlation Analysis

Functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way 'MANOVA' design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The 'candisc' package generalizes this to higher-way 'MANOVA' designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an 'mlm' via the 'plot.candisc' and 'heplot.candisc' methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative.

ggraph — by Thomas Lin Pedersen, a year ago

An Implementation of Grammar of Graphics for Graphs and Networks

The grammar of graphics as implemented in ggplot2 is a poor fit for graph and network visualizations due to its reliance on tabular data input. ggraph is an extension of the ggplot2 API tailored to graph visualizations and provides the same flexible approach to building up plots layer by layer.

plotfunctions — by Jacolien van Rij, 5 years ago

Various Functions to Facilitate Visualization of Data and Analysis

When analyzing data, plots are a helpful tool for visualizing data and interpreting statistical models. This package provides a set of simple tools for building plots incrementally, starting with an empty plot region, and adding bars, data points, regression lines, error bars, gradient legends, density distributions in the margins, and even pictures. The package builds further on R graphics by simply combining functions and settings in order to reduce the amount of code to produce for the user. As a result, the package does not use formula input or special syntax, but can be used in combination with default R plot functions. Note: Most of the functions were part of the package 'itsadug', which is now split in two packages: 1. the package 'itsadug', which contains the core functions for visualizing and evaluating nonlinear regression models, and 2. the package 'plotfunctions', which contains more general plot functions.