Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 91 packages in 0.05 seconds

rtdists — by Henrik Singmann, 4 years ago

Response Time Distributions

Provides response time distributions (density/PDF, distribution function/CDF, quantile function, and random generation): (a) Ratcliff diffusion model (Ratcliff & McKoon, 2008, ) based on C code by Andreas and Jochen Voss and (b) linear ballistic accumulator (LBA; Brown & Heathcote, 2008, ) with different distributions underlying the drift rate.

lme4 — by Ben Bolker, 15 days ago

Linear Mixed-Effects Models using 'Eigen' and S4

Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".

plotrix — by Duncan Murdoch, a month ago

Various Plotting Functions

Lots of plots, various labeling, axis and color scaling functions. The author/maintainer died in September 2023.

glmmML — by Göran Broström, a year ago

Generalized Linear Models with Clustering

Binomial and Poisson regression for clustered data, fixed and random effects with bootstrapping.

acss.data — by Henrik Singmann, 7 months ago

Data Only: Algorithmic Complexity of Short Strings (Computed via Coding Theorem Method)

Data only package providing the algorithmic complexity of short strings, computed using the coding theorem method. For a given set of symbols in a string, all possible or a large number of random samples of Turing machines (TM) with a given number of states (e.g., 5) and number of symbols corresponding to the number of symbols in the strings were simulated until they reached a halting state or failed to end. This package contains data on 4.5 million strings from length 1 to 12 simulated on TMs with 2, 4, 5, 6, and 9 symbols. The complexity of the string corresponds to the distribution of the halting states of the TMs.

dqrng — by Ralf Stubner, 2 years ago

Fast Pseudo Random Number Generators

Several fast random number generators are provided as C++ header only libraries: The PCG family by O'Neill (2014 < https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf>) as well as the Xoroshiro / Xoshiro family by Blackman and Vigna (2021 ). In addition fast functions for generating random numbers according to a uniform, normal and exponential distribution are included. The latter two use the Ziggurat algorithm originally proposed by Marsaglia and Tsang (2000, ). The fast sampling methods support unweighted sampling both with and without replacement. These functions are exported to R and as a C++ interface and are enabled for use with the default 64 bit generator from the PCG family, Xoroshiro128+/++/** and Xoshiro256+/++/** as well as the 64 bit version of the 20 rounds Threefry engine (Salmon et al., 2011, ) as provided by the package 'sitmo'.

bayestestR — by Dominique Makowski, 4 months ago

Understand and Describe Bayesian Models and Posterior Distributions

Provides utilities to describe posterior distributions and Bayesian models. It includes point-estimates such as Maximum A Posteriori (MAP), measures of dispersion (Highest Density Interval - HDI; Kruschke, 2015 ) and indices used for null-hypothesis testing (such as ROPE percentage, pd and Bayes factors). References: Makowski et al. (2021) .

Rmosek — by Henrik A. Friberg, 6 years ago

The R to MOSEK Optimization Interface

This is a meta-package designed to support the installation of Rmosek (>= 6.0) and bring the optimization facilities of MOSEK (>= 6.0) to the R-language. The interface supports large-scale optimization of many kinds: Mixed-integer and continuous linear, second-order cone, exponential cone and power cone optimization, as well as continuous semidefinite optimization. Rmosek and the R-language are open-source projects. MOSEK is a proprietary product, but unrestricted trial and academic licenses are available.

MPTmultiverse — by Henrik Singmann, 5 years ago

Multiverse Analysis of Multinomial Processing Tree Models

Statistical or cognitive modeling usually requires a number of more or less arbitrary choices creating one specific path through a 'garden of forking paths'. The multiverse approach (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016, ) offers a principled alternative in which results for all possible combinations of reasonable modeling choices are reported. MPTmultiverse performs a multiverse analysis for multinomial processing tree (MPT, Riefer & Batchelder, 1988, ) models combining maximum-likelihood/frequentist and Bayesian estimation approaches with different levels of pooling (i.e., data aggregation). For the frequentist approaches, no pooling (with and without parametric or nonparametric bootstrap) and complete pooling are implemented using MPTinR < https://cran.r-project.org/package=MPTinR>. For the Bayesian approaches, no pooling, complete pooling, and three different variants of partial pooling are implemented using TreeBUGS < https://cran.r-project.org/package=TreeBUGS>. The main function is fit_mpt() who performs the multiverse analysis in one call.

sfsmisc — by Martin Maechler, a month ago

Utilities from 'Seminar fuer Statistik' ETH Zurich

Useful utilities ['goodies'] from Seminar fuer Statistik ETH Zurich, some of which were ported from S-plus in the 1990s. For graphics, have pretty (Log-scale) axes eaxis(), an enhanced Tukey-Anscombe plot, combining histogram and boxplot, 2d-residual plots, a 'tachoPlot()', pretty arrows, etc. For robustness, have a robust F test and robust range(). For system support, notably on Linux, provides 'Sys.*()' functions with more access to system and CPU information. Finally, miscellaneous utilities such as simple efficient prime numbers, integer codes, Duplicated(), toLatex.numeric() and is.whole().