Found 2082 packages in 0.01 seconds
Visualizing Hypothesis Tests in Multivariate Linear Models
Provides HE plot and other functions for visualizing hypothesis tests in multivariate linear models. HE plots represent sums-of-squares-and-products matrices for linear hypotheses and for error using ellipses (in two dimensions) and ellipsoids (in three dimensions). It also provides other tools for analysis and graphical display of the models such as robust methods and homogeneity of variance covariance matrices. The related 'candisc' package provides visualizations in a reduced-rank canonical discriminant space when there are more than a few response variables.
Visualizations for 'mlr3'
Visualization package of the 'mlr3' ecosystem. It features plots for mlr3 objects such as tasks, learners, predictions, benchmark results, tuning instances and filters via the 'autoplot()' generic of 'ggplot2'. The package draws plots with the 'viridis' color palette and applies the minimal theme. Visualizations include barplots, boxplots, histograms, ROC curves, and Precision-Recall curves.
Visualization of Regression Models
Provides a convenient interface for constructing plots to visualize the fit of regression models arising from a wide variety of models in R ('lm', 'glm', 'coxph', 'rlm', 'gam', 'locfit', 'lmer', 'randomForest', etc.)
Interactive Visualizations for Profiling R Code
Interactive visualizations for profiling R code.
Interactive Statistical Data Visualization
An extendable toolkit for interactive data visualization and exploration.
Visualization and Analysis Tools for Neural Networks
Visualization and analysis tools to aid in the interpretation of neural network models. Functions are available for plotting, quantifying variable importance, conducting a sensitivity analysis, and obtaining a simple list of model weights.
Data Structures, Summaries, and Visualisations for Missing Data
Missing values are ubiquitous in data and need to be explored and
handled in the initial stages of analysis. 'naniar' provides data
structures and functions that facilitate the plotting of missing values and
examination of imputations. This allows missing data dependencies to be
explored with minimal deviation from the common work patterns of 'ggplot2'
and tidy data. The work is fully discussed at Tierney & Cook (2023)
SHAP Visualizations
Visualizations for SHAP (SHapley Additive exPlanations), such as waterfall plots, force plots, various types of importance plots, dependence plots, and interaction plots. These plots act on a 'shapviz' object created from a matrix of SHAP values and a corresponding feature dataset. Wrappers for the R packages 'xgboost', 'lightgbm', 'fastshap', 'shapr', 'h2o', 'treeshap', 'DALEX', and 'kernelshap' are added for convenience. By separating visualization and computation, it is possible to display factor variables in graphs, even if the SHAP values are calculated by a model that requires numerical features. The plots are inspired by those provided by the 'shap' package in Python, but there is no dependency on it.
Airborne LiDAR Data Manipulation and Visualization for Forestry Applications
Airborne LiDAR (Light Detection and Ranging) interface for data manipulation and visualization. Read/write 'las' and 'laz' files, computation of metrics in area based approach, point filtering, artificial point reduction, classification from geographic data, normalization, individual tree segmentation and other manipulations.
Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models
A graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the 'Shiny' web application framework from 'RStudio' and works with the output of MCMC programs written in any programming language (and has extended functionality for 'Stan' models fit using the 'rstan' and 'rstanarm' packages).