Found 1040 packages in 0.02 seconds
Linear and Nonlinear Mixed Effects Models
Fit and compare Gaussian linear and nonlinear mixed-effects models.
Various R Programming Tools
Functions to assist in R programming, including: - assist in developing, updating, and maintaining R and R packages ('ask', 'checkRVersion', 'getDependencies', 'keywords', 'scat'), - calculate the logit and inverse logit transformations ('logit', 'inv.logit'), - test if a value is missing, empty or contains only NA and NULL values ('invalid'), - manipulate R's .Last function ('addLast'), - define macros ('defmacro'), - detect odd and even integers ('odd', 'even'), - convert strings containing non-ASCII characters (like single quotes) to plain ASCII ('ASCIIfy'), - perform a binary search ('binsearch'), - sort strings containing both numeric and character components ('mixedsort'), - create a factor variable from the quantiles of a continuous variable ('quantcut'), - enumerate permutations and combinations ('combinations', 'permutation'), - calculate and convert between fold-change and log-ratio ('foldchange', 'logratio2foldchange', 'foldchange2logratio'), - calculate probabilities and generate random numbers from Dirichlet distributions ('rdirichlet', 'ddirichlet'), - apply a function over adjacent subsets of a vector ('running'), - modify the TCP_NODELAY ('de-Nagle') flag for socket objects, - efficient 'rbind' of data frames, even if the column names don't match ('smartbind'), - generate significance stars from p-values ('stars.pval'), - convert characters to/from ASCII codes ('asc', 'chr'), - convert character vector to ASCII representation ('ASCIIfy'), - apply title capitalization rules to a character vector ('capwords').
'Memoisation' of Functions
Cache the results of a function so that when you call it again with the same arguments it returns the previously computed value.
R Interface to 'Keras'
Interface to 'Keras' < https://keras.io>, a high-level neural networks 'API'. 'Keras' was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both 'CPU' and 'GPU' devices.
Fast Access to Large ASCII Files
Methods for fast access to large ASCII files. Currently the following file formats are supported: comma separated format (CSV) and fixed width format. It is assumed that the files are too large to fit into memory, although the package can also be used to efficiently access files that do fit into memory. Methods are provided to access and process files blockwise. Furthermore, an opened file can be accessed as one would an ordinary data.frame. The LaF vignette gives an overview of the functionality provided.
Conditional Inference Procedures in a Permutation Test Framework
Conditional inference procedures for the general independence
problem including two-sample, K-sample (non-parametric ANOVA),
correlation, censored, ordered and multivariate problems described
in
Hacks for 'ggplot2'
A 'ggplot2' extension that does a variety of little helpful things. The package extends 'ggplot2' facets through customisation, by setting individual scales per panel, resizing panels and providing nested facets. Also allows multiple colour and fill scales per plot. Also hosts a smaller collection of stats, geoms and axis guides.
Tidy Geospatial Networks
Provides a tidy approach to spatial network analysis, in the form of classes and functions that enable a seamless interaction between the network analysis package 'tidygraph' and the spatial analysis package 'sf'.
Targeted Maximum Likelihood Estimation
Targeted maximum likelihood estimation of point treatment effects (Targeted Maximum Likelihood Learning, The International Journal of Biostatistics, 2(1), 2006. This version automatically estimates the additive treatment effect among the treated (ATT) and among the controls (ATC). The tmle() function calculates the adjusted marginal difference in mean outcome associated with a binary point treatment, for continuous or binary outcomes. Relative risk and odds ratio estimates are also reported for binary outcomes. Missingness in the outcome is allowed, but not in treatment assignment or baseline covariate values. The population mean is calculated when there is missingness, and no variation in the treatment assignment. The tmleMSM() function estimates the parameters of a marginal structural model for a binary point treatment effect. Effect estimation stratified by a binary mediating variable is also available. An ID argument can be used to identify repeated measures. Default settings call 'SuperLearner' to estimate the Q and g portions of the likelihood, unless values or a user-supplied regression function are passed in as arguments.
Fitting Generalized Linear Models
Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm.