Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1048 packages in 0.06 seconds

memoise — by Winston Chang, 4 years ago

'Memoisation' of Functions

Cache the results of a function so that when you call it again with the same arguments it returns the previously computed value.

keras — by Tomasz Kalinowski, 4 months ago

R Interface to 'Keras'

Interface to 'Keras' < https://keras.io>, a high-level neural networks 'API'. 'Keras' was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both 'CPU' and 'GPU' devices.

LaF — by Jan van der Laan, a year ago

Fast Access to Large ASCII Files

Methods for fast access to large ASCII files. Currently the following file formats are supported: comma separated format (CSV) and fixed width format. It is assumed that the files are too large to fit into memory, although the package can also be used to efficiently access files that do fit into memory. Methods are provided to access and process files blockwise. Furthermore, an opened file can be accessed as one would an ordinary data.frame. The LaF vignette gives an overview of the functionality provided.

coin — by Torsten Hothorn, 2 years ago

Conditional Inference Procedures in a Permutation Test Framework

Conditional inference procedures for the general independence problem including two-sample, K-sample (non-parametric ANOVA), correlation, censored, ordered and multivariate problems described in .

ggh4x — by Teun van den Brand, 7 months ago

Hacks for 'ggplot2'

A 'ggplot2' extension that does a variety of little helpful things. The package extends 'ggplot2' facets through customisation, by setting individual scales per panel, resizing panels and providing nested facets. Also allows multiple colour and fill scales per plot. Also hosts a smaller collection of stats, geoms and axis guides.

hal9001 — by Jeremy Coyle, 2 years ago

The Scalable Highly Adaptive Lasso

A scalable implementation of the highly adaptive lasso algorithm, including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator functions. For ease of use and increased flexibility, the Lasso fitting routines invoke code from the 'glmnet' package by default. The highly adaptive lasso was first formulated and described by MJ van der Laan (2017) , with practical demonstrations of its performance given by Benkeser and van der Laan (2016) . This implementation of the highly adaptive lasso algorithm was described by Hejazi, Coyle, and van der Laan (2020) .

sfnetworks — by Lucas van der Meer, a year ago

Tidy Geospatial Networks

Provides a tidy approach to spatial network analysis, in the form of classes and functions that enable a seamless interaction between the network analysis package 'tidygraph' and the spatial analysis package 'sf'.

tmle — by Susan Gruber, 4 months ago

Targeted Maximum Likelihood Estimation

Targeted maximum likelihood estimation of point treatment effects (Targeted Maximum Likelihood Learning, The International Journal of Biostatistics, 2(1), 2006. This version automatically estimates the additive treatment effect among the treated (ATT) and among the controls (ATC). The tmle() function calculates the adjusted marginal difference in mean outcome associated with a binary point treatment, for continuous or binary outcomes. Relative risk and odds ratio estimates are also reported for binary outcomes. Missingness in the outcome is allowed, but not in treatment assignment or baseline covariate values. The population mean is calculated when there is missingness, and no variation in the treatment assignment. The tmleMSM() function estimates the parameters of a marginal structural model for a binary point treatment effect. Effect estimation stratified by a binary mediating variable is also available. An ID argument can be used to identify repeated measures. Default settings call 'SuperLearner' to estimate the Q and g portions of the likelihood, unless values or a user-supplied regression function are passed in as arguments.

glm2 — by Mark W. Donoghoe, 7 years ago

Fitting Generalized Linear Models

Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm.

geodist — by Mark Padgham, 9 months ago

Fast, Dependency-Free Geodesic Distance Calculations

Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) , as used by the 'sf' package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances.