Found 926 packages in 0.01 seconds
Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others
Some functions for drawing some special plots: The function 'bagplot' plots a bagplot, 'faces' plots chernoff faces, 'iconplot' plots a representation of a frequency table or a data matrix, 'plothulls' plots hulls of a bivariate data set, 'plotsummary' plots a graphical summary of a data set, 'puticon' adds icons to a plot, 'skyline.hist' combines several histograms of a one dimensional data set in one plot, 'slider' functions supports some interactive graphics, 'spin3R' helps an inspection of a 3-dim point cloud, 'stem.leaf' plots a stem and leaf plot, 'stem.leaf.backback' plots back-to-back versions of stem and leaf plot.
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms
A fast reimplementation of several density-based algorithms of
the DBSCAN family. Includes the clustering algorithms DBSCAN (density-based
spatial clustering of applications with noise) and HDBSCAN (hierarchical
DBSCAN), the ordering algorithm OPTICS (ordering points to identify the
clustering structure), shared nearest neighbor clustering, and the outlier
detection algorithms LOF (local outlier factor) and GLOSH (global-local
outlier score from hierarchies). The implementations use the kd-tree data
structure (from library ANN) for faster k-nearest neighbor search. An R
interface to fast kNN and fixed-radius NN search is also provided.
Hahsler, Piekenbrock and Doran (2019)
An Alternative Conflict Resolution Strategy
R's default conflict management system gives the most recently loaded package precedence. This can make it hard to detect conflicts, particularly when they arise because a package update creates ambiguity that did not previously exist. 'conflicted' takes a different approach, making every conflict an error and forcing you to choose which function to use.
Interactive Grammar of Graphics
An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.
Moving Subset Analysis FACE
The new methodology "moving subset analysis" provides functions to investigate the effect of environmental conditions on the CO2 fertilization effect within longterm free air carbon enrichment (FACE) experiments. In general, the functionality is applicable to derive the influence of a third variable (forcing experiment-support variable) on the relation between a dependent and an independent variable.
Collection of Methods to Detect Dichotomous Differential Item Functioning (DIF)
Provides a collection of standard methods to detect differential item functioning among dichotomously scored items. Methods for uniform and non-uniform DIF, based on test-score or IRT methods, for comparing two or more than two groups of respondents, are available (Magis, Beland, Tuerlinckx and De Boeck,A General Framework and an R Package for the Detection of Dichotomous Differential Item Functioning, Behavior Research Methods, 42, 2010, 847-862
Detection of Outliers in Time Series
Detection of outliers in time series following the
Chen and Liu (1993)
Outlier Detection Using Invariant Coordinate Selection
Multivariate outlier detection is performed using invariant coordinates where the package offers different methods to choose the appropriate components. ICS is a general multivariate technique with many applications in multivariate analysis. ICSOutlier offers a selection of functions for automated detection of outliers in the data based on a fitted ICS object or by specifying the dataset and the scatters of interest. The current implementation targets data sets with only a small percentage of outliers.
Calculations and Visualisations Related to Geometric Morphometrics
A toolset for Geometric Morphometrics and mesh processing. This includes (among other stuff) mesh deformations based on reference points, permutation tests, detection of outliers, processing of sliding semi-landmarks and semi-automated surface landmark placement.
Acoustic Template Detection in R
Acoustic template detection and monitoring database interface. Create, modify, save, and use templates for detection of animal vocalizations. View, verify, and extract results. Upload a MySQL schema to a existing instance, manage survey metadata, write and read templates and detections locally or to the database.