Found 121 packages in 0.17 seconds
Functions for Kriging and Point Pattern Analysis
Functions for kriging and point pattern analysis.
Datasets for Spatial Analysis
Diverse spatial datasets for demonstrating, benchmarking and teaching spatial data analysis. It includes R data of class sf (defined by the package 'sf'), Spatial ('sp'), and nb ('spdep'). Unlike other spatial data packages such as 'rnaturalearth' and 'maps', it also contains data stored in a range of file formats including GeoJSON and GeoPackage, but from version 2.3.4, no longer ESRI Shapefile - use GeoPackage instead. Some of the datasets are designed to illustrate specific analysis techniques. cycle_hire() and cycle_hire_osm(), for example, is designed to illustrate point pattern analysis techniques.
Analysis of Geostatistical Data
Geostatistical analysis including variogram-based, likelihood-based and Bayesian methods. Software companion for Diggle and Ribeiro (2007)
Geographic Data Analysis and Modeling
Reading, writing, manipulating, analyzing and modeling of spatial data. This package has been superseded by the "terra" package < https://CRAN.R-project.org/package=terra>.
Geographically Weighted Regression
Functions for computing geographically weighted regressions are provided, based on work by Chris Brunsdon, Martin Charlton and Stewart Fotheringham.
Bitmap Images / Pixel Maps
Functions for import, export, visualization and other manipulations of bitmapped images.
Bindings for the 'Geospatial' Data Abstraction Library
Provides bindings to the 'Geospatial' Data Abstraction Library ('GDAL') (>= 1.11.4) and access to projection/transformation operations from the 'PROJ' library. Please note that 'rgdal' will be retired during October 2023, plan transition to sf/stars/'terra' functions using 'GDAL' and 'PROJ' at your earliest convenience (see < https://r-spatial.org/r/2023/05/15/evolution4.html> and earlier blogs for guidance). Use is made of classes defined in the 'sp' package. Raster and vector map data can be imported into R, and raster and vector 'sp' objects exported. The 'GDAL' and 'PROJ' libraries are external to the package, and, when installing the package from source, must be correctly installed first; it is important that 'GDAL' < 3 be matched with 'PROJ' < 6. From 'rgdal' 1.5-8, installed with to 'GDAL' >=3, 'PROJ' >=6 and 'sp' >= 1.4, coordinate reference systems use 'WKT2_2019' strings, not 'PROJ' strings. 'Windows' and 'macOS' binaries (including 'GDAL', 'PROJ' and their dependencies) are provided on 'CRAN'.
Econometric Models for Spatial Panel Data
ML and GM estimation and diagnostic testing of econometric models for spatial panel data.
Mapping Fisheries Data and Spatial Analysis Tools
This software has evolved from fisheries research conducted at the Pacific Biological Station (PBS) in 'Nanaimo', British Columbia, Canada. It extends the R language to include two-dimensional plotting features similar to those commonly available in a Geographic Information System (GIS). Embedded C code speeds algorithms from computational geometry, such as finding polygons that contain specified point events or converting between longitude-latitude and Universal Transverse Mercator (UTM) coordinates. Additionally, we include 'C++' code developed by Angus Johnson for the 'Clipper' library, data for a global shoreline, and other data sets in the public domain. Under the user's R library directory '.libPaths()', specifically in './PBSmapping/doc', a complete user's guide is offered and should be consulted to use package functions effectively.
Calculate Sun Position, Sunrise, Sunset, Solar Noon and Twilight
Provides a set of convenient functions for calculating sun-related information, including the sun's position (elevation and azimuth), and the times of sunrise, sunset, solar noon, and twilight for any given geographical location on Earth. These calculations are based on equations provided by the National Oceanic & Atmospheric Administration (NOAA) < https://gml.noaa.gov/grad/solcalc/calcdetails.html> as described in "Astronomical Algorithms" by Jean Meeus (1991, ISBN: 978-0-943396-35-4).