Statistical Methods for the Item Count Technique and List Experiment

Allows researchers to conduct multivariate statistical analyses of survey data with list experiments. This survey methodology is also known as the item count technique or the unmatched count technique and is an alternative to the commonly used randomized response method. The package implements the methods developed by Imai (2011) , Blair and Imai (2012) , Blair, Imai, and Lyall (2013) , Imai, Park, and Greene (2014) , Aronow, Coppock, Crawford, and Green (2015) , Chou, Imai, and Rosenfeld (2017) , and Blair, Chou, and Imai (2018) <>. This includes a Bayesian MCMC implementation of regression for the standard and multiple sensitive item list experiment designs and a random effects setup, a Bayesian MCMC hierarchical regression model with up to three hierarchical groups, the combined list experiment and endorsement experiment regression model, a joint model of the list experiment that enables the analysis of the list experiment as a predictor in outcome regression models, a method for combining list experiments with direct questions, and methods for diagnosing and adjusting for response error. In addition, the package implements the statistical test that is designed to detect certain failures of list experiments, and a placebo test for the list experiment using data from direct questions.

Travis-CI Build Status

R package list.


Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


9.0 by Graeme Blair, 3 months ago

Browse source code at

Authors: Graeme Blair [aut, cre] , Winston Chou [aut] , Kosuke Imai [aut] , Bethany Park [ctb] , Alexander Coppock [ctb]

Documentation:   PDF Manual  

GPL (>= 2) license

Imports VGAM, magic, gamlss.dist, MASS, quadprog, corpcor, mvtnorm, coda, stats, arm

Depends on utils, sandwich

Suggests testthat, knitr

See at CRAN