Interact with 'Google Analytics'

Functions for querying the 'Google Analytics' core reporting, real-time, multi-channel funnel and management APIs, as well as the 'Google Tag Manager' (GTM) API. Write methods are also provided for the management and GTM APIs so that you can change tag, property or view settings, for example. Define reporting queries using natural R expressions instead of being concerned as much about API technical intricacies like query syntax, character code escaping, and API limitations.

Interactively querying Google Analytics reports

Johann de Boer 2018-06-07

Travis-CI BuildStatus Coveragestatus CRANstatus Rdoc

Classes and methods for interactive use of the Google Analytics core reporting, real-time reporting, multi-channel funnel reporting, metadata, configuration management and Google Tag Manager APIs.

The aim of this package is to support R users in defining reporting queries using natural R expressions instead of being concerned about API technical intricacies like query syntax, character code escaping and API limitations.

This package provides functions for querying the Google Analytics core reporting, real-time reporting, multi-channel funnel reporting and management APIs, as well as the Google Tag Manager API. Write methods are also provided for the Google Analytics Management and Google Tag Manager APIs so that you can, for example, change tag, property or view settings.


Support for GoogleAnalyticsR integration is now available for segments and table filter objects. You can supply these objects to the google_analytics function in GoogleAnalyticsR by using as(), supplying the appropriate GoogleAnalyticsR class names, which are "segment_ga4" for segments and ".filter_clauses_ga4" for table filters. Soon GoogleanalyticsR will implicitly coerce ganalytics segments and table filters so that you do not need to explicitly coerce using as().

Many new functions have been provided for writing segmentation expressions:

  • Segments(...) - define a list of segments dynamically based on one or more expressions and/or a selection of built-in and/or custom segments by their IDs.
  • Include(...) - expressions (conditions or sequences) defining users or sessions to include in the segment
  • Exclude(...) - expressions (conditions or sequences) defining users or sessions to exclude from the segment
  • PerUser(...) - set the scope of one or more segment conditions or sequences to user-level, or set the scope of a metric condition to user-level.
  • PerSession(...) - set the scope of one or more segment conditions or sequences to user-level, or set the scope of a metric condition to session-level.
  • PerHit(...) - specify that a set of logically combined conditions must all be met for a single hit, or set the scope of a metric condition to hit-level.
  • Sequence(...) - define a sequence of one or more conditions to use in a dynamic segment definition.
  • Then(condition) - used within a Sequence() to specify that this condition must immediately follow the preceding condition, as opposed to the default of loosely following at some point later.
  • Later(condition) - similar to Then() but means that a condition can happen any point after the preceding condition - this is how conditions are treated by default in a sequence if not explicitly set.
  • First(condition) - similar to Then() but means that a condition must be the first interaction (hit) by the user within the specified date-range. Using First() is optional. Without using First() at the start of a sequence, then the first condition does not need to match the first interaction by the user. It does not make sense to use First() anywhere else in the sequence other than at the start, if used at all.

Multi-channel funnel (MCF) and real-time (RT) queries can now be constructed, but work is still needed to process the response from these queries - stay tuned for updates on this.

Instead of using Or, And, and Not, it is now possible to use familiar R language Boolean operators, | (Or), & (And), and ! (Not) instead (thanks to @hadley for suggestion #2). It is important to keep in mind however that Google Analytics requires Or to have precedence over And, which is the opposite to the natural precedence given by R when using the | and & operators. Therefore, remember to use parentheses ( ) to enforce the correct order of operation to your Boolean expressions. For example my_filter <- !bounced & (completed_goal | transacted) is a valid structure for a Google Analytics reporting API filter expression.

You can now query the Google Analytics Management API to obtain details in R about the configuration of your accounts, properties and views, such as goals you have defined. There are write methods available too, but these have not been fully tested so use with extreme care. If you wish to use these functions, it is recommended that you test these using test login, otherwise avoid using the “INSERT”, “UPDATE” and “DELETE” methods.

There is also some basic support for the Google Tag Manager API, but again, this is a work in progress so take care with the write methods above.


1. Install the necessary packages into R via the GitHub repository


  • Ensure you have installed the latest version of R

Current stable release from CRAN

You can install the released version of ganalytics from CRAN with:


Current development release from GitHub

Alternatively, you can execute the following statements in R to install the current stable development version of ganalytics from GitHub:

# Install the latest version of remotes via CRAN
# Install ganalytics via the GitHub repository.
# End

2. Prepare your Google API application (you only need to do this once)

  • Browse to [Google API Console] (
  • Check you are signed into Google with the account you wish to use.
  • Choose Create Project from the Google API Console and give your project a name (or choose an existing project if you have one already).
  • From the APIs page, enable the Analytics API. You may also want to enable the Tag Manager API if you wish to try that.
  • You will need to agree and accept the Google APIs and Analytics API Terms of Service to proceed.
  • Go to the Credentials page, click Add credentials, choose OAuth 2.0 client ID, then select “Other”.
  • Note your Client ID and Client Secret and download the JSON file to your R working directory.

Note: For further information about Google APIs, please refer to the References section at the end of this document.

3. Set your system environment variables (this is optional but recommended)

  • Add the following two user variables:

    Variable name Variable value
    1 GOOGLE_APIS_CONSUMER_ID <Your client ID>
    2 GOOGLE_APIS_CONSUMER_SECRET <Your client secret>
    • To do this in Windows:
      • Search for and select “Edit Environment Variables For Your Account” from the Start menu.
      • Within the Environment Variables window, add the above User Variables by selecting New and entering the Variable Name and Variable Value, then click OK. Do this for both variables listed in the table above.
      • Click OK.
      • Restart your computer for the new environment variables to take effect.
    • There is also a free open source utility to set environment variables on Mac OS called EnvPane
    • Another method that works across platforms is to create an .Renviron file within your active R working directory that is structured like this:
GOOGLE_APIS_CONSUMER_SECRET = <Your client secret>

Alternatively you can temporarily set your environment variables straight from R using this command:

  GOOGLE_APIS_CONSUMER_ID = "<Your client ID>",
  GOOGLE_APIS_CONSUMER_SECRET = "<Your client secret>"

Note: For other operating systems please refer to the Reference section at the end of this document.

4. Authenticate and attempt your first query with ganalytics

  • ganalytics needs to know the ID of the Google Analytics view that you wish to query. You can obtain this in a number of ways:

    • Using the Google Analytics Query Explorer tool
    • From the Admin page in Google Analytics under View Settings, or
    • The browser’s address bar while viewing a report in Google Analytics - look for the digits between the letter ‘p’ and trailing ‘/’, e.g. .../a11111111w22222222p33333333/ shows a view ID of 33333333.
  • Alternatively, ganalytics can look up the view ID for you:

    • If you have access to only one Google Analytics account, with one property, then ganalytics will automatically select the default view for you from that property.
    • Otherwise it will select the default view of the first property from the first account that it finds in the list of accounts that you have access to.
  • Return to R and execute the following to load the ganalytics package:

  • If you have successfully set your system environment variables in step 3 above, then you can execute the following, optionally providing the email address you use to sign-in to Google Analytics:

    my_creds <- GoogleApiCreds("[email protected]")
  • Otherwise do one of the following:

    • If you downloaded the JSON file containing your Google API app credentials, then provide the file path:

      my_creds <- GoogleApiCreds("[email protected]", "client_secret.json")
    • Or, instead of a file you can supply the client_id and client_secret directly:

      my_creds <- GoogleApiCreds(
        list(client_id = "<client id>", client_secret = "<client secret>")
  • Now formulate and run your Google Analytics query, remembering to substitute view_id with the view ID you wish to use:

    myQuery <- GaQuery( view_id, creds = my_creds ) # view_id is optional
  • You should then be directed to within your default web browser asking you to sign-in to your Google account if you are not already. Once signed-in you will be asked to grant read-only access to your Google Analytics account for the Google API project you created in step 1.

  • Make sure you are signed into the Google account you wish to use, then grant access by selecting “Allow access”. You can then close the page and return back to R.

If you have successfully executed all of the above R commands you should see the output of the default ganalytics query; sessions by day for the past 7 days. For example:

        date sessions
1 2015-03-27     2988
2 2015-03-28     1594
3 2015-03-29     1912
4 2015-03-30     3061
5 2015-03-31     2609
6 2015-04-01     2762
7 2015-04-02     2179
8 2015-04-03     1552

Note: A small file will be saved to your home directory (‘My Documents’ in Windows) to cache your new reusable authentication token.


As demonstrated in the installation steps above, before executing any of the following examples:

  1. Load the ganalytics package
  2. Generate a gaQuery object using the GaQuery() function and assigning the object to a variable name such as myQuery.


The following examples assume you have successfully completed the above steps and have named your Google Analytics query object: myQuery.

Example 1 - Setting the date range

# Set the date range from 1 January 2013 to 31 May 2013: (Dates are specified in the format "YYYY-MM-DD".)
DateRange(myQuery) <- c("2013-01-01", "2013-05-31")
myData <- GetGaData(myQuery)
# Adjust the start date to 1 March 2013:
StartDate(myQuery) <- "2013-03-01"
# Adjust the end date to 31 March 2013:
EndDate(myQuery) <- "2013-03-31"
myData <- GetGaData(myQuery)
# End

Example 2 - Choosing what metrics to report

# Report number of page views instead
Metrics(myQuery) <- "pageviews"
myData <- GetGaData(myQuery)
# Report both pageviews and sessions
Metrics(myQuery) <- c("pageviews", "sessions")
# These variations are also acceptable
Metrics(myQuery) <- c("ga:pageviews", "ga.sessions")
myData <- GetGaData(myQuery)
# End

Example 3 - Selecting what dimensions to split your metrics by

# Similar to metrics, but for dimensions
Dimensions(myQuery) <- c("year", "week", "dayOfWeekName", "hour")
# Lets set a wider date range
DateRange(myQuery) <- c("2012-10-01", "2013-03-31")
myData <- GetGaData(myQuery)
# End

Example 4 - Sort by

# Sort by descending number of pageviews
SortBy(myQuery) <- "-pageviews"
myData <- GetGaData(myQuery)
# End

Example 5 - Row filters

# Filter for Sunday sessions only
sundayExpr <- Expr(~dayOfWeekName == "Sunday")
TableFilter(myQuery) <- sundayExpr
myData <- GetGaData(myQuery)
# Remove the filter
TableFilter(myQuery) <- NULL
myData <- GetGaData(myQuery)
# End

Example 6 - Combining filters with AND

# Expression to define Sunday sessions
sundayExpr <- Expr(~dayOfWeekName == "Sunday")
# Expression to define organic search sessions
organicExpr <- Expr(~medium == "organic")
# Expression to define organic search sessions made on a Sunday
sundayOrganic <- sundayExpr & organicExpr
TableFilter(myQuery) <- sundayOrganic
myData <- GetGaData(myQuery)
# Let's concatenate medium to the dimensions for our query
Dimensions(myQuery) <- c(Dimensions(myQuery), "medium")
myData <- GetGaData(myQuery)
# End

Example 7 - Combining filters with OR

# In a similar way to AND
loyalExpr <- !Expr(~sessionCount %matches% "^[0-3]$") # Made more than 3 sessions
recentExpr <- Expr(~daysSinceLastSession %matches% "^[0-6]$") # Visited sometime within the past 7 days.
loyalOrRecent <- loyalExpr | recentExpr
TableFilter(myQuery) <- loyalOrRecent
myData <- GetGaData(myQuery)
# End

Example 8 - Filters that combine ORs with ANDs

loyalExpr <- !Expr(~sessionCount %matches% "^[0-3]$") # Made more than 3 sessions
recentExpr <- Expr(~daysSinceLastSession %matches% "^[0-6]$") # Visited sometime within the past 7 days.
loyalOrRecent <- loyalExpr | recentExpr
sundayExpr <- Expr(~dayOfWeekName == "Sunday")
loyalOrRecent_Sunday <- loyalOrRecent & sundayExpr
TableFilter(myQuery) <- loyalOrRecent_Sunday
myData <- GetGaData(myQuery)
# Perform the same query but change which dimensions to view
Dimensions(myQuery) <- c("sessionCount", "daysSinceLastSession", "dayOfWeek")
myData <- GetGaData(myQuery)
# End

Example 9 - Sorting ‘numeric’ dimensions (continuing from example 8)

# Continuing from example 8...
# Change filter to loyal session AND recent sessions AND visited on Sunday
loyalAndRecent_Sunday <- loyalExpr & recentExpr & sundayExpr
TableFilter(myQuery) <- loyalAndRecent_Sunday
# Sort by decending visit count and ascending days since last visit.
SortBy(myQuery) <- c("-sessionCount", "+daysSinceLastSession")
myData <- GetGaData(myQuery)
# Notice that the Google Analytics Core Reporting API doesn't recognise 'numerical' dimensions as
# ordered factors when sorting. We can use R to sort instead, such as using dplyr.
myData <- myData %>% arrange(desc(sessionCount), daysSinceLastSession)
# End

Example 10 - Session segmentation

# Visit segmentation is expressed similarly to row filters and supports AND and OR combinations.
# Define a segment for sessions where a "thank-you", "thankyou" or "success" page was viewed.
thankyouExpr <- Expr(~pagePath %matches% "thank\\-?you|success")
Segments(myQuery) <- thankyouExpr
# Reset the filter
TableFilter(myQuery) <- NULL
# Split by traffic source and medium
Dimensions(myQuery) <- c("source", "medium")
# Sort by decending number of sessions
SortBy(myQuery) <- "-sessions"
myData <- GetGaData(myQuery)
# End

Example 11 - Using automatic pagination to get more than 10,000 rows of data per query

# Sessions by date and hour for the years 2016 and 2017:
# First let's clear any filters or segments defined previously
TableFilter(myQuery) <- NULL
Segments(myQuery) <- NULL
# Define our date range
DateRange(myQuery) <- c("2016-01-01", "2017-12-31")
# Define our metrics and dimensions
Metrics(myQuery) <- "sessions"
Dimensions(myQuery) <- c("date", "dayOfWeekName", "hour")
# Let's allow a maximum of 20000 rows (default is 10000)
MaxResults(myQuery) <- 20000
myData <- GetGaData(myQuery)
## Let's use dplyr to analyse the data
# Sessions by day of week
sessions_by_dayOfWeek <- myData %>%
  count(dayOfWeekName, wt = sessions) %>% 
  mutate(dayOfWeekName = factor(dayOfWeekName, levels = c(
    "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"
  ), labels = c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"), ordered = TRUE)) %>% 
  barplot(n, names.arg = dayOfWeekName, xlab = "day of week", ylab = "sessions")
# Sessions by hour of day
sessions_by_hour <- myData %>%
  count(hour, wt = sessions)
  barplot(n, names.arg = hour, xlab = "hour", ylab = "sessions")
# End

Example 12 - Using ggplot2

To run this example first install ggplot2 if you haven’t already.


Once installed, then run the following example.

# Sessions by date and hour for the years 2016 and 2017:
# First let's clear any filters or segments defined previously
TableFilter(myQuery) <- NULL
Segments(myQuery) <- NULL
# Define our date range
DateRange(myQuery) <- c("2016-01-01", "2017-12-31")
# Define our metrics and dimensions
Metrics(myQuery) <- "sessions"
Dimensions(myQuery) <- c("date", "dayOfWeek", "hour", "deviceCategory")
# Let's allow a maximum of 40000 rows (default is 10000)
MaxResults(myQuery) <- 40000
myData <- GetGaData(myQuery)
# Sessions by hour of day and day of week
avg_sessions_by_hour_wday_device <- myData %>% 
  group_by(hour, dayOfWeek, deviceCategory) %>% 
  summarise(sessions = mean(sessions)) %>% 
# Relabel the days of week
levels(avg_sessions_by_hour_wday_device$dayOfWeek) <- c(
  "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
# Plot the summary data
  x = hour,
  y = sessions,
  data = avg_sessions_by_hour_wday_device,
  facets = ~dayOfWeek,
  fill = deviceCategory,
  geom = "col"
# End

Thanks to:

  • Hadley Wickham @hadley
  • Mark Edmondson @MarkEdmondson1234
  • RStudio team
  • R Core team

Useful references

  1. Google Analytics Core Reporting API reference guide
  2. Google Analytics Dimensions and Metrics reference
  3. Creating a Google API project
  4. Generating an OAuth 2.0 client ID for Google APIs
  5. Using OAuth 2.0 for Installed Applications
  6. EnvPane utility for setting environment variables in OSX
  7. Setting environment variables in Ubuntu Linux


Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Google Analytics and Google Tag Manager are trademarks of Google.


ganalytics 0.10.7

  • Support for staged installation in R 3.6.0 and updates to documentation.

ganalytics 0.10.6

  • Integration with the googleAnalyticsR package: ganalytics custom segments and custom filters can now be used by googleAnalyticsR. Please refer to the vignettes included with this release for examples of how to make use of this integration.
  • Added a new function ga_view_selector() which provides a user-interactive way to select a view from the available Google Analytics accounts and properties within those accounts.

ganalytics 2018-09-08

  • Added vignettes with examples of using ganalytics custom segments and custom filters with googleAnalyticsR.

ganalytics 2018-07-29

  • Documentation improvements. Methods to coerce ganalytics dimensions and metrics lists to googleAnalyticsR equivalent classes in order to further integrate the two packages.

ganalytics 2018-07-22

  • Added new function ga_view_selector() which provides a user-interactive way to select a view from the available Google Analytics accounts and properties within those accounts.
  • Demos have been updated to use this new function. And lastly, ganalytics now has a logo.

ganalytics 2018-07-01

  • Released ganalytics 0.10.6 to CRAN.

ganalytics 2018-06-23

  • Version type dimensions, e.g. ga:appVersion, are now coerced to numeric_version class, so that version numbers (e.g. ‘2.4.7’, ‘2.5.13’, ‘2.32.1’, etc...) can be correctly sorted and compared as if they were numeric values. Updated gademo.R.
  • The dateRange class now inherits 'lubridate' interval as its superclass.
  • It is now possible to query more than 10 metrics with just one query.

ganalytics 2018-05-30

  • Additional methods to coerce ganalytics segment classes and table filters for use with the 'googleAnalyticsR' package.
  • Dynamic Segments objects now have a name property.
  • Updated googleAnalyticsR-demo and examples in the readme file.

ganalytics 2018-02-18

  • Added methods for coercing a range of ganalytics classes into 'googleAnalyticsR' classes, so that ganalytics segments, filters and expressions can be used by the google_analytics function of the 'googleAnalyticsR' package.

ganalytics 2018-02-12

  • Scope and negation of segment conditions can now be defined at the filter level.
  • Fixed bug where backslashes were being escaped incorrectly in expression operands.
  • The methods of the Segment generic function are now split into two generic functions, Segment and Segments.
  • Segments is used to set or get a named list segments, whereas Segment is for defining a single segment to be added to a Segments list.

ganalytics 2017-12-27

  • Support for %starts_with% and %ends_with% operators in addition to %contains% which was incorrectly described as %starts_with% previously.
  • Added PerProduct method for setting metric scope for dynamic segmentation.
  • ganalytics now searches the working directory for a json file containing the API client ID and secret supplied by Google Cloud Console credentials manager.

ganalytics 2015-12-19

  • Username (email address) for Google API authentication can now be set using via a system environment variable with a key named as [APPNAME]_USER, where [APPNAME] is 'GOOGLE_APIS' default, e.g. GOOGLE_APIS_USER = [email protected]
  • Updates to support recent API additions, including Management API view bot filtering flag.

ganalytics 2015-12-12

  • Ability to query past 10 metrics by automatically joining API results by there dimensions.
  • Added methods for NOTing one-of-in-list '[]' dimension and within-range '<>' metric expressions.
  • Default date range has been pushed back 1 day to ensure complete data is returned by MCF queries.

ganalytics 2015-11-27

  • Support multiple segments being applied to a query.

ganalytics 2015-11-25

  • profileId argument for Query generators is deprecated.

ganalytics 2015-10-06

  • [] and [[]] operators now supported by Management API collection objects, so get a single entity resource from collection such as Accounts, Properties, Views, Goals, etc.

ganalytics 2015-09-25

  • gaGoal objects now include goal configuration details.

ganalytics 2015-09-20

  • Comparators are now generic functions with methods for supplying a .var (LHS) and .operand (RHS)

ganalytics 2015-09-18

  • PerUser and PerSession can now be used instead of SegmentFilters to create a scoped segment filter list. Also, Include and Exclude have been added to add include and exclude (i.e negate) filters to a segment definition, rather than needing to use the negate argument of the Sequence and SegmentConditionFilter functions.
  • Added function for generating a segment definition from a list where ... can be used to mean 'followed-by / Later' prior to the next step in the sequence. Note this function uses non-standard evaluation.
  • PerHit can be used to transform a condition filter into a sequence of length one, which offers a powerful form of segmentation where all conditions must be met for a single hit rather than scoped across sessions or users.
  • Expr can now be used with a formula denoted by the prefix ~. This uses non-standard evaluation so that variable names and condition operators do not need to be surrounded by quotation marks.
  • Added IsNegated generic function and method for testing whether a segment filter's negated slot is set to TRUE.

ganalytics 2015-09-16

  • Renamed segmentation functions: GaSequenceCondition -> Sequence; GaNonSequenceCondition -> SegmentConditionFilter; GaSegmentCondition -> SegmentFilters

ganalytics 2015-09-15

  • Renamed GaSequence to Sequence. Added PerUser, PerSession and PerHit generic functions for setting the scope of segment filters, and metrics conditions used within segments. Also, renamed GaScopeLevel and GaScopeLevel<- functions to ScopeLevel and ScopeLevel<- respectively.
  • Sampling warnings are now more informative by notifying you of the total sample size and space with a sampling rate percentage too.
  • Authentication credentials are remembered between commands without the need for the user to store them in a local variable.

ganalytics 2015-09-01

  • Added Domain Specific Language (DSL) functions utilising Non-standard Evaluation (NSE) for defining conditions and sequences.

ganalytics 2015-08-20

  • Renamed segmentation functions: GaStartsWith -> First, GaPreceeds -> Later, GaImmediatelyPreceeds -> Then . Renamed operator to comparator.
  • Added functions to set scope of segment filters and segment metric expressions.

ganalytics 2015-08-17

  • Update to latest dimension and metrics metadata and added support for custom dimensions and device category as view filter fields.
  • Changed default metric for real-time queries to rt:pageviews.

ganalytics 2015-08-14

  • Added demos.
  • Added support for new alphanumeric segment IDs.
  • Foundations to support multiple segments within a single query.

ganalytics 2015-06-05

  • Support the use of a 'lubridate' interval object as a dateRange object for GA Reporting API queries.

ganalytics 2015-05-04

  • Added support for real-time and multi-channel-funnels reporting APIs - both formulating queries and processing the query responses.

ganalytics 2015-05-02

  • Renaming of many functions by removing the Ga prefix in the name, with backwards compatibility for the old function names via aliases.

ganalytics 2015-04-26

  • Support for base R logical expression operators for defining GA query expressions.
  • Added validity check for dimension and metric names of MCF and RT expressions.

ganalytics 2015-04-06

  • Added function for setting or getting the scope level of segments and expressions.

ganalytics 2015-04-05

  • Added support for dateOfSession dimension when used for segmentation.
  • Suggest valid dimension and metric names to the user if a partial match is found.
  • Automatic handling of date formatting for API requests and responses.

ganalytics 2015-04-04

  • Added support for list and range comparator operators when used for segment expressions.

ganalytics 2015-03-22

  • Ability to update and delete existing resource entities such as user links.

ganalytics 2015-03-21

  • Query view filter definitions. Ability to insert new resource entities where supported by the Management API, e.g. adding new user links. Also, ability to query definitions of custom dimensions and metrics via the management API

ganalytics 2015-02-12

  • Ability to query user permissions for accounts, properties and views via the Management API.

ganalytics 2015-02-09

  • Added Google Tag Manager classes and methods.

ganalytics 2015-01-29

  • Extend GaSegment methods to accept a gaUserSegment class object in addition to already accepted expressions and segment IDs.

ganalytics 2015-01-26

  • Automatically select view from a given gaProperty or gaAccount class object.
  • Extend GaQuery methods to accept a gaView class object in addition to already accepted view IDs.
  • Ability to request user defined segments via the Management API.
  • If no OAuth app creds provided, then use JSON file in current directory called ".app_oauth_creds.json" if exists.

ganalytics 2015-01-25

  • Query the Google Tag Manager API

ganalytics 2015-01-12

  • Values for various class properties defined as factors with appropriate levels.

ganalytics 2015-01-11

  • Ability to automatically select the default view of a given property

ganalytics 2014-12-27

  • Functions to retrieve details about available Google Analytics accounts, properties and views that can be queried.

ganalytics 2014-12-20

  • Implemented exponential back off algorithm to improve reliability of fetching reporting API data in case of intermittent network outages.

ganalytics 2014-11-22

  • Optionally supply a username to use for the OAuth2.0 user authentication dance with Google.

ganalytics 2014-11-21

  • Optionally supply a JSON file from the Google APIs console that contains the client ID and secret to use for OAuth2.0 authentication.

ganalytics 2014-09-30

  • Ability to negate a segment expression using R's NOT (!) operator.

ganalytics 2014-09-16

  • Include sample size and sample space as attributes in the returned dataframe from a reporting API request.

ganalytics 2014-08-09

  • Support for defining unified segment expressions.
  • Added optional argument to set the sampling level of a query.

ganalytics 2014-06-21

  • Query from multiple views with a the responses bound into a single data frame.

ganalytics 2014-06-05

  • Upgrade to using Meta Data API for updating available dimensions and metrics

ganalytics 2014-06-04

  • Warning given for queries resulting in a sampled report being returned

ganalytics 2014-05-23

  • Upgrade to OAuth2.0 functionality built into httr

ganalytics 2013-09-16

  • Implemented function to split a date range into N or daily increments

ganalytics 2013-06-10

  • Automate update of available dimensions and metrics.
  • Abstraction of Google APIs request as a generalised function

ganalytics 2013-05-31

  • Implemented OAuth2.0 reference classes

ganalytics 2013-05-25

  • Initial version released via GitHub

Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.