Found 479 packages in 0.03 seconds
Generalized Regression on Orthogonal Components
Robust multiple or multivariate linear regression, nonparametric regression on orthogonal components, classical or robust partial least squares models as described in Bilodeau, Lafaye De Micheaux and Mahdi (2015)
Efficient Savitzky-Golay Filtering
Smoothing signals and computing their derivatives is a common
requirement in signal processing workflows. Savitzky-Golay filters are a
established method able to do both (Savitzky and Golay, 1964
Facilities for Simulating from ODE-Based Models
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The 'VODE' and 'LSODA' are in the public domain. The information is available in the inst/COPYRIGHTS.
Animated Interactive Grammar of Graphics
Functions are provided for defining animated,
interactive data visualizations in R code, and rendering
on a web page. The 2018 Journal of Computational and
Graphical Statistics paper,
Suite of Deterministic and Robust Algorithms for Linear Regression
DetLTS, DetMM (and DetS) Algorithms for Deterministic, Robust Linear Regression.
Facilities for Simulating from ODE-Based Models
Facilities for running simulations from ordinary differential equation ('ODE') models, such as pharmacometrics and other compartmental models. A compilation manager translates the ODE model into C, compiles it, and dynamically loads the object code into R for improved computational efficiency. An event table object facilitates the specification of complex dosing regimens (optional) and sampling schedules. NB: The use of this package requires both C and Fortran compilers, for details on their use with R please see Section 6.3, Appendix A, and Appendix D in the "R Administration and Installation" manual. Also the code is mostly released under GPL. The 'VODE' and 'LSODA' are in the public domain. The information is available in the inst/COPYRIGHTS.
Tools for Developing R Packages Interfacing with 'Stan'
Provides various tools for developers of R packages interfacing with 'Stan' < https://mc-stan.org>, including functions to set up the required package structure, S3 generics and default methods to unify function naming across 'Stan'-based R packages, and vignettes with recommendations for developers.
R Package Installation from Remote Repositories, Including 'GitHub'
Download and install R packages stored in 'GitHub', 'GitLab', 'Bitbucket', 'Bioconductor', or plain 'subversion' or 'git' repositories. This package provides the 'install_*' functions in 'devtools'. Indeed most of the code was copied over from 'devtools'.
Spatial and Spatiotemporal SPDE-Based GLMMs with 'TMB'
Implements spatial and spatiotemporal GLMMs (Generalized Linear
Mixed Effect Models) using 'TMB', 'fmesher', and the SPDE (Stochastic Partial
Differential Equation) Gaussian Markov random field approximation to
Gaussian random fields. One common application is for spatially explicit
species distribution models (SDMs).
See Anderson et al. (2024)
Generalized Linear Mixed Models using Template Model Builder
Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.