Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 1310 packages in 0.01 seconds

fixest — by Laurent Berge, 10 months ago

Fast Fixed-Effects Estimations

Fast and user-friendly estimation of econometric models with multiple fixed-effects. Includes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial. The core of the package is based on optimized parallel C++ code, scaling especially well for large data sets. The method to obtain the fixed-effects coefficients is based on Berge (2018) < https://github.com/lrberge/fixest/blob/master/_DOCS/FENmlm_paper.pdf>. Further provides tools to export and view the results of several estimations with intuitive design to cluster the standard-errors.

seriation — by Michael Hahsler, 4 months ago

Infrastructure for Ordering Objects Using Seriation

Infrastructure for ordering objects with an implementation of several seriation/sequencing/ordination techniques to reorder matrices, dissimilarity matrices, and dendrograms. Also provides (optimally) reordered heatmaps, color images and clustering visualizations like dissimilarity plots, and visual assessment of cluster tendency plots (VAT and iVAT). Hahsler et al (2008) .

ParBayesianOptimization — by Samuel Wilson, 2 years ago

Parallel Bayesian Optimization of Hyperparameters

Fast, flexible framework for implementing Bayesian optimization of model hyperparameters according to the methods described in Snoek et al. . The package allows the user to run scoring function in parallel, save intermediary results, and tweak other aspects of the process to fully utilize the computing resources available to the user.

protolite — by Jeroen Ooms, 6 months ago

Highly Optimized Protocol Buffer Serializers

Pure C++ implementations for reading and writing several common data formats based on Google protocol-buffers. Currently supports 'rexp.proto' for serialized R objects, 'geobuf.proto' for binary geojson, and 'mvt.proto' for vector tiles. This package uses the auto-generated C++ code by protobuf-compiler, hence the entire serialization is optimized at compile time. The 'RProtoBuf' package on the other hand uses the protobuf runtime library to provide a general- purpose toolkit for reading and writing arbitrary protocol-buffer data in R.

osqp — by Balasubramanian Narasimhan, 10 months ago

Quadratic Programming Solver using the 'OSQP' Library

Provides bindings to the 'OSQP' solver. The 'OSQP' solver is a numerical optimization package or solving convex quadratic programs written in 'C' and based on the alternating direction method of multipliers. See for details.

nloptr — by Aymeric Stamm, 17 days ago

R Interface to NLopt

Solve optimization problems using an R interface to NLopt. NLopt is a free/open-source library for nonlinear optimization, providing a common interface for a number of different free optimization routines available online as well as original implementations of various other algorithms. See < https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/> for more information on the available algorithms. Building from included sources requires 'CMake'. On Linux and 'macOS', if a suitable system build of NLopt (2.7.0 or later) is found, it is used; otherwise, it is built from included sources via 'CMake'. On Windows, NLopt is obtained through 'rwinlib' for 'R <= 4.1.x' or grabbed from the appropriate toolchain for 'R >= 4.2.0'.

DeclareDesign — by Graeme Blair, a year ago

Declare and Diagnose Research Designs

Researchers can characterize and learn about the properties of research designs before implementation using `DeclareDesign`. Ex ante declaration and diagnosis of designs can help researchers clarify the strengths and limitations of their designs and to improve their properties, and can help readers evaluate a research strategy prior to implementation and without access to results. It can also make it easier for designs to be shared, replicated, and critiqued.

mlr — by Martin Binder, 10 months ago

Machine Learning in R

Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

ROI.plugin.lpsolve — by Florian Schwendinger, 2 years ago

'lp_solve' Plugin for the 'R' Optimization Infrastructure

Enhances the 'R' Optimization Infrastructure ('ROI') package with the 'lp_solve' solver.

penalized — by Jelle Goeman, 3 years ago

L1 (Lasso and Fused Lasso) and L2 (Ridge) Penalized Estimation in GLMs and in the Cox Model

Fitting possibly high dimensional penalized regression models. The penalty structure can be any combination of an L1 penalty (lasso and fused lasso), an L2 penalty (ridge) and a positivity constraint on the regression coefficients. The supported regression models are linear, logistic and Poisson regression and the Cox Proportional Hazards model. Cross-validation routines allow optimization of the tuning parameters.