Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 89 packages in 0.02 seconds

missCforest — by Imad El Badisy, 2 years ago

Ensemble Conditional Trees for Missing Data Imputation

Single imputation based on the Ensemble Conditional Trees (i.e. Cforest algorithm Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007) ).

nordklimdata1 — by Jose Gama, 9 years ago

Dataset for Climate Analysis with Data from the Nordic Region

The Nordklim dataset 1.0 is a unique and useful achievement for climate analysis. It includes observations of twelve different climate elements from more than 100 stations in the Nordic region, in time span over 100 years. The project contractors were NORDKLIM/NORDMET on behalf of the National meteorological services in Denmark (DMI), Finland (FMI), Iceland (VI), Norway (DNMI) and Sweden (SMHI).

gmfamm — by Alexander Volkmann, 5 months ago

Generalized Multivariate Functional Additive Models

Supply implementation to model generalized multivariate functional data using Bayesian additive mixed models of R package 'bamlss' via a latent Gaussian process (see Umlauf, Klein, Zeileis (2018) ).

bonsai — by Simon Couch, 4 months ago

Model Wrappers for Tree-Based Models

Bindings for additional tree-based model engines for use with the 'parsnip' package. Models include gradient boosted decision trees with 'LightGBM' (Ke et al, 2017.), conditional inference trees and conditional random forests with 'partykit' (Hothorn and Zeileis, 2015. and Hothorn et al, 2006. ), and accelerated oblique random forests with 'aorsf' (Jaeger et al, 2022 ).

logiBin — by Sneha Tody, 7 years ago

Binning Variables to Use in Logistic Regression

Fast binning of multiple variables using parallel processing. A summary of all the variables binned is generated which provides the information value, entropy, an indicator of whether the variable follows a monotonic trend or not, etc. It supports rebinning of variables to force a monotonic trend as well as manual binning based on pre specified cuts. The cut points of the bins are based on conditional inference trees as implemented in the partykit package. The conditional inference framework is described by Hothorn T, Hornik K, Zeileis A (2006) .

exams.forge — by Sigbert Klinke, 4 months ago

Support for Compiling Examination Tasks using the 'exams' Package

The main aim is to further facilitate the creation of exercises based on the package 'exams' by GrĂ¼n, B., and Zeileis, A. (2009) . Creating effective student exercises involves challenges such as creating appropriate data sets and ensuring access to intermediate values for accurate explanation of solutions. The functionality includes the generation of univariate and bivariate data including simple time series, functions for theoretical distributions and their approximation, statistical and mathematical calculations for tasks in basic statistics courses as well as general tasks such as string manipulation, LaTeX/HTML formatting and the editing of XML task files for 'Moodle'.

LSD — by Bjoern Schwalb, 4 years ago

Lots of Superior Depictions

Create lots of colorful plots in a plethora of variations. Try the LSD demotour().

drugDemand — by Kaifeng Lu, 9 months ago

Drug Demand Forecasting

Performs drug demand forecasting by modeling drug dispensing data while taking into account predicted enrollment and treatment discontinuation dates. The gap time between randomization and the first drug dispensing visit is modeled using interval-censored exponential, Weibull, log-logistic, or log-normal distributions (Anderson-Bergman (2017) ). The number of skipped visits is modeled using Poisson, zero-inflated Poisson, or negative binomial distributions (Zeileis, Kleiber & Jackman (2008) ). The gap time between two consecutive drug dispensing visits given the number of skipped visits is modeled using linear regression based on least squares or least absolute deviations (Birkes & Dodge (1993, ISBN:0-471-56881-3)). The number of dispensed doses is modeled using linear or linear mixed-effects models (McCulloch & Searle (2001, ISBN:0-471-19364-X)).

DescTools — by Andri Signorell, 13 days ago

Tools for Descriptive Statistics

A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'BigCamelCase' style was consequently applied to functions borrowed from contributed R packages as well.