Found 89 packages in 0.02 seconds
Ensemble Conditional Trees for Missing Data Imputation
Single imputation based on the Ensemble Conditional Trees (i.e. Cforest algorithm Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007)
Dataset for Climate Analysis with Data from the Nordic Region
The Nordklim dataset 1.0 is a unique and useful achievement for climate analysis. It includes observations of twelve different climate elements from more than 100 stations in the Nordic region, in time span over 100 years. The project contractors were NORDKLIM/NORDMET on behalf of the National meteorological services in Denmark (DMI), Finland (FMI), Iceland (VI), Norway (DNMI) and Sweden (SMHI).
Generalized Multivariate Functional Additive Models
Supply implementation to model generalized multivariate functional
data using Bayesian additive mixed models of R package 'bamlss' via a latent
Gaussian process (see Umlauf, Klein, Zeileis (2018)
Model Wrappers for Tree-Based Models
Bindings for additional tree-based model engines for use with
the 'parsnip' package. Models include gradient boosted decision trees
with 'LightGBM' (Ke et al, 2017.),
conditional inference trees and conditional random forests with
'partykit' (Hothorn and Zeileis, 2015. and
Hothorn et al, 2006.
Binning Variables to Use in Logistic Regression
Fast binning of multiple variables using parallel processing. A summary of all the variables binned is generated which provides the information value, entropy, an indicator of whether the variable follows a monotonic trend or not, etc. It supports rebinning of variables to force a monotonic trend as well as manual binning based on pre specified cuts. The cut points of the bins are based on conditional inference trees as implemented in the partykit package. The conditional inference framework is described by Hothorn T, Hornik K, Zeileis A (2006)
Support for Compiling Examination Tasks using the 'exams' Package
The main aim is to further facilitate the creation of exercises based on the package 'exams'
by GrĂ¼n, B., and Zeileis, A. (2009)
Lots of Superior Depictions
Create lots of colorful plots in a plethora of variations. Try the LSD demotour().
Drug Demand Forecasting
Performs drug demand forecasting by modeling drug dispensing data while taking into account predicted enrollment and treatment discontinuation dates. The gap time between randomization and the first drug dispensing visit is modeled using interval-censored exponential, Weibull, log-logistic, or log-normal distributions (Anderson-Bergman (2017)
Tools for Descriptive Statistics
A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently describing data. The author's intention was to create a toolbox, which facilitates the (notoriously time consuming) first descriptive tasks in data analysis, consisting of calculating descriptive statistics, drawing graphical summaries and reporting the results. The package contains furthermore functions to produce documents using MS Word (or PowerPoint) and functions to import data from Excel. Many of the included functions can be found scattered in other packages and other sources written partly by Titans of R. The reason for collecting them here, was primarily to have them consolidated in ONE instead of dozens of packages (which themselves might depend on other packages which are not needed at all), and to provide a common and consistent interface as far as function and arguments naming, NA handling, recycling rules etc. are concerned. Google style guides were used as naming rules (in absence of convincing alternatives). The 'BigCamelCase' style was consequently applied to functions borrowed from contributed R packages as well.