Found 454 packages in 0.01 seconds
Multidimensional Item Response Theory
Analysis of discrete response data using
unidimensional and multidimensional item analysis models under the Item
Response Theory paradigm (Chalmers (2012)
Tools for the Analysis of Air Pollution Data
Tools to analyse, interpret and understand air pollution
data. Data are typically regular time series and air quality
measurement, meteorological data and dispersion model output can be
analysed. The package is described in Carslaw and Ropkins (2012,
Interactive Grammar of Graphics
An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.
Generalised Additive Extreme Value Models
Methods for fitting various extreme value distributions with parameters of
generalised additive model (GAM) form are provided. For details of distributions
see Coles, S.G. (2001)
Time-Varying Effect Models
Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012)
Gradient-Based Coenospace Vegetation Simulator
Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.
Easy Analysis and Visualization of Factorial Experiments
Facilitates easy analysis of factorial experiments, including purely within-Ss designs (a.k.a. "repeated measures"), purely between-Ss designs, and mixed within-and-between-Ss designs. The functions in this package aim to provide simple, intuitive and consistent specification of data analysis and visualization. Visualization functions also include design visualization for pre-analysis data auditing, and correlation matrix visualization. Finally, this package includes functions for non-parametric analysis, including permutation tests and bootstrap resampling. The bootstrap function obtains predictions either by cell means or by more advanced/powerful mixed effects models, yielding predictions and confidence intervals that may be easily visualized at any level of the experiment's design.
Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains
Calculate a multivariate functional principal component analysis
for data observed on different dimensional domains. The estimation algorithm
relies on univariate basis expansions for each element of the multivariate
functional data (Happ & Greven, 2018)
Data for 'GAMs: An Introduction with R'
Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.
Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks
Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.