Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 454 packages in 0.01 seconds

mirt — by Phil Chalmers, 9 days ago

Multidimensional Item Response Theory

Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) ). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture IRT models, and zero-inflated response models are supported.

openair — by David Carslaw, 8 months ago

Tools for the Analysis of Air Pollution Data

Tools to analyse, interpret and understand air pollution data. Data are typically regular time series and air quality measurement, meteorological data and dispersion model output can be analysed. The package is described in Carslaw and Ropkins (2012, ) and subsequent papers.

ggvis — by Hadley Wickham, 10 months ago

Interactive Grammar of Graphics

An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.

evgam — by Ben Youngman, 2 years ago

Generalised Additive Extreme Value Models

Methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) , GAMs see Wood, S.N. (2017) , and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) . Details of how evgam works and various examples are given in Youngman, B.D. (2022) .

tvem — by John J. Dziak, a year ago

Time-Varying Effect Models

Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) . We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

coenoflex — by David W. Roberts, 8 years ago

Gradient-Based Coenospace Vegetation Simulator

Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.

ez — by Michael A. Lawrence, 8 years ago

Easy Analysis and Visualization of Factorial Experiments

Facilitates easy analysis of factorial experiments, including purely within-Ss designs (a.k.a. "repeated measures"), purely between-Ss designs, and mixed within-and-between-Ss designs. The functions in this package aim to provide simple, intuitive and consistent specification of data analysis and visualization. Visualization functions also include design visualization for pre-analysis data auditing, and correlation matrix visualization. Finally, this package includes functions for non-parametric analysis, including permutation tests and bootstrap resampling. The bootstrap function obtains predictions either by cell means or by more advanced/powerful mixed effects models, yielding predictions and confidence intervals that may be easily visualized at any level of the experiment's design.

MFPCA — by Clara Happ-Kurz, 2 years ago

Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains

Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) . Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) .

gamair — by Simon Wood, 5 years ago

Data for 'GAMs: An Introduction with R'

Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.

riskRegression — by Thomas Alexander Gerds, a year ago

Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks

Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.