Found 1028 packages in 0.02 seconds
Geographic Data Analysis and Modeling
Reading, writing, manipulating, analyzing and modeling of spatial data. This package has been superseded by the "terra" package < https://CRAN.R-project.org/package=terra>.
Perform Phylogenetic Path Analysis
A comprehensive and easy to use R implementation of confirmatory
phylogenetic path analysis as described by Von Hardenberg and Gonzalez-Voyer
(2012)
Bayes Factors for Informative Hypotheses
Computes approximated adjusted fractional Bayes factors for
equality, inequality, and about equality constrained hypotheses.
For a tutorial on this method, see Hoijtink, Mulder, van Lissa, & Gu,
(2019)
Cross-Validated Area Under the ROC Curve Confidence Intervals
Tools for working with and evaluating cross-validated area under the ROC curve (AUC) estimators. The primary functions of the package are ci.cvAUC and ci.pooled.cvAUC, which report cross-validated AUC and compute confidence intervals for cross-validated AUC estimates based on influence curves for i.i.d. and pooled repeated measures data, respectively. One benefit to using influence curve based confidence intervals is that they require much less computation time than bootstrapping methods. The utility functions, AUC and cvAUC, are simple wrappers for functions from the ROCR package.
Distances and Routes on Geographical Grids
Provides classes and functions to calculate various
distance measures and routes in heterogeneous geographic
spaces represented as grids. The package implements measures
to model dispersal histories first presented by van Etten and
Hijmans (2010)
Fast R and C++ Access to NIfTI Images
Provides very fast read and write access to images stored in the NIfTI-1, NIfTI-2 and ANALYZE-7.5 formats, with seamless synchronisation of in-memory image objects between compiled C and interpreted R code. Also provides a simple image viewer, and a C/C++ API that can be used by other packages. Not to be confused with 'RNiftyReg', which performs image registration and applies spatial transformations.
Merged Block Randomization
Package to carry out merged block randomization (Van der Pas (2019),
Smooth Survival Models, Including Generalized Survival Models
R implementation of generalized survival models (GSMs), smooth accelerated failure time (AFT) models and Markov multi-state models. For the GSMs, g(S(t|x))=eta(t,x) for a link function g, survival S at time t with covariates x and a linear predictor eta(t,x). The main assumption is that the time effect(s) are smooth
An Ensemble Method for Combining Subset-Specific Algorithm Fits
The Subsemble algorithm is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of k-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble. The paper, "Subsemble: An ensemble method for combining subset-specific algorithm fits" is authored by Stephanie Sapp, Mark J. van der Laan & John Canny (2014)
Read Data Stored by 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', 'dBase', ...
Reading and writing data stored by some versions of 'Epi Info', 'Minitab', 'S', 'SAS', 'SPSS', 'Stata', 'Systat', 'Weka', and for reading and writing some 'dBase' files.