Found 9652 packages in 0.05 seconds
Simple Data Frames
Provides a 'tbl_df' class (the 'tibble') with stricter checking and better formatting than the traditional data frame.
Prepare and Explore Data for Palaeobiological Analyses
Provides functionality to support data preparation and exploration for
palaeobiological analyses, improving code reproducibility and accessibility. The
wider aim of 'palaeoverse' is to bring the palaeobiological community together
to establish agreed standards. The package currently includes functionality for
data cleaning, binning (time and space), exploration, summarisation and
visualisation. Reference datasets (i.e. Geological Time Scales < https://stratigraphy.org/chart>)
and auxiliary functions are also provided. Details can be found in:
Jones et al., (2023)
Draw Stratified Samples from the VADIR Database
Affords researchers the ability to draw stratified samples from the U.S. Department of Veteran's Affairs/Department of Defense Identity Repository (VADIR) database according to a variety of population characteristics. The VADIR database contains information for all veterans who were separated from the military after 1980. The central utility of the present package is to integrate data cleaning and formatting for the VADIR database with the stratification methods described by Mahto (2019) < https://CRAN.R-project.org/package=splitstackshape>. Data from VADIR are not provided as part of this package.
Miscellaneous Functions for the Analysis of Educational Assessments
Miscellaneous functions for data cleaning and data analysis of educational assessments. Includes functions for descriptive
analyses, character vector manipulations and weighted statistics. Mainly a lightweight dependency for the packages 'eatRep',
'eatGADS', 'eatPrep' and 'eatModel' (which will be subsequently submitted to 'CRAN').
The function for defining (weighted) contrasts in weighted effect coding refers to
te Grotenhuis et al. (2017)
Tools for Accessing the Botanical Information and Ecology Network Database
Provides Tools for Accessing the Botanical Information and Ecology Network Database. The BIEN database contains cleaned and standardized botanical data including occurrence, trait, plot and taxonomic data (See < https://bien.nceas.ucsb.edu/bien/> for more Information). This package provides functions that query the BIEN database by constructing and executing optimized SQL queries.
Obtaining Stars from Flat Tables
Data in multidimensional systems is obtained from operational systems and is transformed to adapt it to the new structure. Frequently, the operations to be performed aim to transform a flat table into a star schema. Transformations can be carried out using professional extract, transform and load tools or tools intended for data transformation for end users. With the tools mentioned, this transformation can be carried out, but it requires a lot of work. The main objective of this package is to define transformations that allow obtaining stars from flat tables easily. In addition, it includes basic data cleaning, dimension enrichment, incremental data refresh and query operations, adapted to this context.
Processing 'Gen5' 2.06 Exported Data
A collection of functions for processing 'Gen5' 2.06 exported data. 'Gen5' is an essential data analysis software for BioTek plate readers < https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/>. This package contains functions for data cleaning, modeling and plotting using exported data from 'Gen5' version 2.06. It exports technically correct data defined in (Edwin de Jonge and Mark van der Loo (2013) < https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf>) for customized analysis. It contains Boltzmann fitting for general kinetic analysis. See < https://www.github.com/yanxianUCSB/gen5helper> for more information, documentation and examples.
Develop Text Prediction Models Based on N-Grams
A framework for developing n-gram models for text prediction. It provides data cleaning, data sampling, extracting tokens from text, model generation, model evaluation and word prediction. For information on how n-gram models work we referred to: "Speech and Language Processing" < https://web.archive.org/web/20240919222934/https%3A%2F%2Fweb.stanford.edu%2F~jurafsky%2Fslp3%2F3.pdf>. For optimizing R code and using R6 classes we referred to "Advanced R" < https://adv-r.hadley.nz/r6.html>. For writing R extensions we referred to "R Packages", < https://r-pkgs.org/index.html>.
Creating Contact and Social Networks
Process spatially- and temporally-discrete data into contact and social networks, and facilitate network analysis by randomizing individuals' movement paths and/or related categorical variables. To use this package, users need only have a dataset containing spatial data (i.e., latitude/longitude, or planar x & y coordinates), individual IDs relating spatial data to specific individuals, and date/time information relating spatial locations to temporal locations. The functionality of this package ranges from data "cleaning" via multiple filtration functions, to spatial and temporal data interpolation, and network creation and analysis. Functions within this package are not limited to describing interpersonal contacts. Package functions can also identify and quantify "contacts" between individuals and fixed areas (e.g., home ranges, water bodies, buildings, etc.). As such, this package is an incredibly useful resource for facilitating epidemiological, ecological, ethological and sociological research.
Performance Loss Rate Analysis Pipeline
The pipeline contained in this package provides tools used in the
Solar Durability and Lifetime Extension Center (SDLE) for the analysis of
Performance Loss Rates (PLR) in real world photovoltaic systems. Functions
included allow for data cleaning, feature correction, power predictive modeling,
PLR determination, and uncertainty bootstrapping through various methods