Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 471 packages in 0.01 seconds

caret — by Max Kuhn, 5 months ago

Classification and Regression Training

Misc functions for training and plotting classification and regression models.

logistf — by Georg Heinze, 10 days ago

Firth's Bias-Reduced Logistic Regression

Fit a logistic regression model using Firth's bias reduction method, equivalent to penalization of the log-likelihood by the Jeffreys prior. Confidence intervals for regression coefficients can be computed by penalized profile likelihood. Firth's method was proposed as ideal solution to the problem of separation in logistic regression, see Heinze and Schemper (2002) . If needed, the bias reduction can be turned off such that ordinary maximum likelihood logistic regression is obtained. Two new modifications of Firth's method, FLIC and FLAC, lead to unbiased predictions and are now available in the package as well, see Puhr et al (2017) .

spatstat.core — by Adrian Baddeley, 3 years ago

Core Functionality of the 'spatstat' Family

Functionality for data analysis and modelling of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

ismev — by Eric Gilleland, 7 years ago

An Introduction to Statistical Modeling of Extreme Values

Functions to support the computations carried out in `An Introduction to Statistical Modeling of Extreme Values' by Stuart Coles. The functions may be divided into the following groups; maxima/minima, order statistics, peaks over thresholds and point processes.

mirt — by Phil Chalmers, 3 months ago

Multidimensional Item Response Theory

Analysis of discrete response data using unidimensional and multidimensional item analysis models under the Item Response Theory paradigm (Chalmers (2012) ). Exploratory and confirmatory item factor analysis models are estimated with quadrature (EM) or stochastic (MHRM) methods. Confirmatory bi-factor and two-tier models are available for modeling item testlets using dimension reduction EM algorithms, while multiple group analyses and mixed effects designs are included for detecting differential item, bundle, and test functioning, and for modeling item and person covariates. Finally, latent class models such as the DINA, DINO, multidimensional latent class, mixture IRT models, and zero-inflated response models are supported, as well as a wide family of probabilistic unfolding models.

flextable — by David Gohel, 6 months ago

Functions for Tabular Reporting

Use a grammar for creating and customizing pretty tables. The following formats are supported: 'HTML', 'PDF', 'RTF', 'Microsoft Word', 'Microsoft PowerPoint' and R 'Grid Graphics'. 'R Markdown', 'Quarto' and the package 'officer' can be used to produce the result files. The syntax is the same for the user regardless of the type of output to be produced. A set of functions allows the creation, definition of cell arrangement, addition of headers or footers, formatting and definition of cell content with text and or images. The package also offers a set of high-level functions that allow tabular reporting of statistical models and the creation of complex cross tabulations.

MuMIn — by Kamil BartoĊ„, 25 days ago

Multi-Model Inference

Tools for model selection and model averaging with support for a wide range of statistical models. Automated model selection through subsets of the maximum model, with optional constraints for model inclusion. Averaging of model parameters and predictions based on model weights derived from information criteria (AICc and alike) or custom model weighting schemes.

fda.usc — by Manuel Oviedo de la Fuente, 6 months ago

Functional Data Analysis and Utilities for Statistical Computing

Routines for exploratory and descriptive analysis of functional data such as depth measurements, atypical curves detection, regression models, supervised classification, unsupervised classification and functional analysis of variance.

mediation — by Teppei Yamamoto, 6 years ago

Causal Mediation Analysis

We implement parametric and non parametric mediation analysis. This package performs the methods and suggestions in Imai, Keele and Yamamoto (2010) , Imai, Keele and Tingley (2010) , Imai, Tingley and Yamamoto (2013) , Imai and Yamamoto (2013) and Yamamoto (2013) < http://web.mit.edu/teppei/www/research/IVmediate.pdf>. In addition to the estimation of causal mediation effects, the software also allows researchers to conduct sensitivity analysis for certain parametric models.

spatstat.model — by Adrian Baddeley, a month ago

Parametric Statistical Modelling and Inference for the 'spatstat' Family

Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots.