Found 484 packages in 0.47 seconds
Linear Mixed-Effects Models using 'Eigen' and S4
Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' "glue".
Hexagonal Binning Routines
Binning and plotting functions for hexagonal bins.
Modelling with Sparse and Dense Matrices
Modelling with sparse and dense 'Matrix' matrices, using modular prediction and response module classes.
Rmetrics - Chronological and Calendar Objects
The 'timeDate' class fulfils the conventions of the ISO 8601 standard as well as of the ANSI C and POSIX standards. Beyond these standards it provides the "Financial Center" concept which allows to handle data records collected in different time zones and mix them up to have always the proper time stamps with respect to your personal financial center, or alternatively to the GMT reference time. It can thus also handle time stamps from historical data records from the same time zone, even if the financial centers changed day light saving times at different calendar dates.
Statistics for Long-Memory Processes (Book Jan Beran), and Related Functionality
Datasets and Functionality from 'Jan Beran' (1994). Statistics for Long-Memory Processes; Chapman & Hall. Estimation of Hurst (and more) parameters for fractional Gaussian noise, 'fARIMA' and 'FEXP' models.
Financial Time Series Objects (Rmetrics)
'S4' classes and various tools for financial time series: Basic functions such as scaling and sorting, subsetting, mathematical operations and statistical functions.
Rmetrics - Markets and Basic Statistics
Provides a collection of functions to explore and to investigate basic properties of financial returns and related quantities. The covered fields include techniques of explorative data analysis and the investigation of distributional properties, including parameter estimation and hypothesis testing. Even more there are several utility functions for data handling and management.
Sparse Linear Algebra
Some basic linear algebra functionality for sparse matrices is provided: including Cholesky decomposition and backsolving as well as standard R subsetting and Kronecker products.
Examples from Multilevel Modelling Software Review
Data and examples from a multilevel modelling software review as well as other well-known data sets from the multilevel modelling literature.
Template Model Builder: A General Random Effect Tool Inspired by 'ADMB'
With this tool, a user should be able to quickly implement complex random effect models through simple C++ templates. The package combines 'CppAD' (C++ automatic differentiation), 'Eigen' (templated matrix-vector library) and 'CHOLMOD' (sparse matrix routines available from R) to obtain an efficient implementation of the applied Laplace approximation with exact derivatives. Key features are: Automatic sparseness detection, parallelism through 'BLAS' and parallel user templates.