Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 965 packages in 0.01 seconds

ada — by Mark Culp, 9 years ago

The R Package Ada for Stochastic Boosting

Performs discrete, real, and gentle boost under both exponential and logistic loss on a given data set. The package ada provides a straightforward, well-documented, and broad boosting routine for classification, ideally suited for small to moderate-sized data sets.

osmdata — by Mark Padgham, 2 years ago

Import 'OpenStreetMap' Data as Simple Features or Spatial Objects

Download and import of 'OpenStreetMap' ('OSM') data as 'sf' or 'sp' objects. 'OSM' data are extracted from the 'Overpass' web server (< https://overpass-api.de/>) and processed with very fast 'C++' routines for return to 'R'.

ggrastr — by Evan Biederstedt, 2 years ago

Rasterize Layers for 'ggplot2'

Rasterize only specific layers of a 'ggplot2' plot while simultaneously keeping all labels and text in vector format. This allows users to keep plots within the reasonable size limit without loosing vector properties of the scale-sensitive information.

tidytable — by Mark Fairbanks, 4 months ago

Tidy Interface to 'data.table'

A tidy interface to 'data.table', giving users the speed of 'data.table' while using tidyverse-like syntax.

C50 — by Max Kuhn, 2 years ago

C5.0 Decision Trees and Rule-Based Models

C5.0 decision trees and rule-based models for pattern recognition that extend the work of Quinlan (1993, ISBN:1-55860-238-0).

etm — by Mark Clements, 5 years ago

Empirical Transition Matrix

The etm (empirical transition matrix) package permits to estimate the matrix of transition probabilities for any time-inhomogeneous multi-state model with finite state space using the Aalen-Johansen estimator. Functions for data preparation and for displaying are also included (Allignol et al., 2011 ). Functionals of the Aalen-Johansen estimator, e.g., excess length-of-stay in an intermediate state, can also be computed (Allignol et al. 2011 ).

MplusAutomation — by Michael Hallquist, a year ago

An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus

Leverages the R language to automate latent variable model estimation and interpretation using 'Mplus', a powerful latent variable modeling program developed by Muthen and Muthen (< https://www.statmodel.com>). Specifically, this package provides routines for creating related groups of models, running batches of models, and extracting and tabulating model parameters and fit statistics.

epiR — by Mark Stevenson, 2 months ago

Tools for the Analysis of Epidemiological Data

Tools for the analysis of epidemiological and surveillance data. Contains functions for directly and indirectly adjusting measures of disease frequency, quantifying measures of association on the basis of single or multiple strata of count data presented in a contingency table, computation of confidence intervals around incidence risk and incidence rate estimates and sample size calculations for cross-sectional, case-control and cohort studies. Surveillance tools include functions to calculate an appropriate sample size for 1- and 2-stage representative freedom surveys, functions to estimate surveillance system sensitivity and functions to support scenario tree modelling analyses.

spatstat — by Adrian Baddeley, 12 days ago

Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.

twoStageDesignTMLE — by Susan Gruber, 2 months ago

Targeted Maximum Likelihood Estimation for Two-Stage Study Design

An inverse probability of censoring weighted (IPCW) targeted maximum likelihood estimator (TMLE) for evaluating a marginal point treatment effect from data where some variables were collected on only a subset of participants using a two-stage design (or marginal mean outcome for a single arm study). A TMLE for conditional parameters defined by a marginal structural model (MSM) is also available.