Supervised Data Transformation by Means of Neural Network Hidden Layer

A supervised transformation of datasets is performed. The aim is similar to that of Principal Component Analysis (PCA), that is, to carry out data transformation and dimensionality reduction, but in a supervised way. This is achieved by first training a 3-layer Multi-Layer Perceptron and then using the activations of the hidden layer as a transformation of the input features. In fact, it takes advantage of the change of representation provided by the hidden layer of a neural network. This can be useful as data pre-processing for Machine Learning methods in general, specially for those that do not work well with many irrelevant or redundant features. It uses the nnet package under the hood. Valls, J.M., Aler, R., Galvan, I.M., and Camacho, D. (2021). "Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems". Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) "Learning representations by back-propagating errors" .


Reference manual

It appears you don't have a PDF plugin for this browser. You can click here to download the reference manual.


0.1.4 by Ricardo Aler, 9 months ago

Browse source code at

Authors: Ricardo Aler [aut, cre] , Jose Valls [aut] , Ines Galvan [aut] , David Camacho [aut]

Documentation:   PDF Manual  

GPL (>= 2) license

Imports nnet, NeuralNetTools, FNN, pracma

Suggests dplyr, knitr, rmarkdown, ggplot2, ggridges, tidyr, forcats, mlr, mlrCPO

See at CRAN