Found 2289 packages in 0.03 seconds
Tools for Multiple Imputation in Multilevel Modeling
Provides tools for multiple imputation of missing data in multilevel modeling. Includes a user-friendly interface to the packages 'pan' and 'jomo', and several functions for visualization, data management and the analysis of multiply imputed data sets.
An Object Oriented System Meant to Become a Successor to S3 and S4
A new object oriented programming system designed to be a successor to S3 and S4. It includes formal class, generic, and method specification, and a limited form of multiple dispatch. It has been designed and implemented collaboratively by the R Consortium Object-Oriented Programming Working Group, which includes representatives from R-Core, 'Bioconductor', 'Posit'/'tidyverse', and the wider R community.
Abstractions for Promise-Based Asynchronous Programming
Provides fundamental abstractions for doing asynchronous programming in R using promises. Asynchronous programming is useful for allowing a single R process to orchestrate multiple tasks in the background while also attending to something else. Semantics are similar to 'JavaScript' promises, but with a syntax that is idiomatic R.
Using R to Run 'JAGS'
Providing wrapper functions to implement Bayesian analysis in JAGS. Some major features include monitoring convergence of a MCMC model using Rubin and Gelman Rhat statistics, automatically running a MCMC model till it converges, and implementing parallel processing of a MCMC model for multiple chains.
Manipulate R Data Frames Using SQL
The sqldf() function is typically passed a single argument which is an SQL select statement where the table names are ordinary R data frame names. sqldf() transparently sets up a database, imports the data frames into that database, performs the SQL select or other statement and returns the result using a heuristic to determine which class to assign to each column of the returned data frame. The sqldf() or read.csv.sql() functions can also be used to read filtered files into R even if the original files are larger than R itself can handle. 'RSQLite', 'RH2', 'RMySQL' and 'RPostgreSQL' backends are supported.
Multiple Aggregation Prediction Algorithm
Functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014)
Block Assignment Files
Download and read US Census Bureau data relationship files. Provides support for cleaning and using block assignment files since 2010, as described in < https://www.census.gov/geographies/reference-files/time-series/geo/block-assignment-files.html>. Also includes support for working with block equivalency files, used for years outside of decennial census years.
Turn Geospatial Polygons into Regular or Hexagonal Grids
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids.
This package enables the generation of regular (square) and hexagonal grids through the package
'sp' and then assigns the content of the existing polygons to the new grid using
the Hungarian algorithm, Kuhn (1955) (
Regression Modeling Strategies
Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. 'rms' is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. 'rms' works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.
Dunn's Test of Multiple Comparisons Using Rank Sums
Computes Dunn's test (1964) for stochastic dominance and reports the results among multiple pairwise comparisons after a Kruskal-Wallis test for 0th-order stochastic dominance among k groups (Kruskal and Wallis, 1952). 'dunn.test' makes k(k-1)/2 multiple pairwise comparisons based on Dunn's z-test-statistic approximations to the actual rank statistics. The null hypothesis for each pairwise comparison is that the probability of observing a randomly selected value from the first group that is larger than a randomly selected value from the second group equals one half; this null hypothesis corresponds to that of the Wilcoxon-Mann-Whitney rank-sum test. Like the rank-sum test, if the data can be assumed to be continuous, and the distributions are assumed identical except for a difference in location, Dunn's test may be understood as a test for median difference and for mean difference. 'dunn.test' accounts for tied ranks.