Found 2156 packages in 0.02 seconds
Regression Modeling Strategies
Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. 'rms' is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. 'rms' works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.
Turn Geospatial Polygons into Regular or Hexagonal Grids
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids.
This package enables the generation of regular (square) and hexagonal grids through the package
'sp' and then assigns the content of the existing polygons to the new grid using
the Hungarian algorithm, Kuhn (1955) (
Various R Programming Tools for Plotting Data
Various R programming tools for plotting data, including: - calculating and plotting locally smoothed summary function as ('bandplot', 'wapply'), - enhanced versions of standard plots ('barplot2', 'boxplot2', 'heatmap.2', 'smartlegend'), - manipulating colors ('col2hex', 'colorpanel', 'redgreen', 'greenred', 'bluered', 'redblue', 'rich.colors'), - calculating and plotting two-dimensional data summaries ('ci2d', 'hist2d'), - enhanced regression diagnostic plots ('lmplot2', 'residplot'), - formula-enabled interface to 'stats::lowess' function ('lowess'), - displaying textual data in plots ('textplot', 'sinkplot'), - plotting dots whose size reflects the relative magnitude of the elements ('balloonplot', 'bubbleplot'), - plotting "Venn" diagrams ('venn'), - displaying Open-Office style plots ('ooplot'), - plotting multiple data on same region, with separate axes ('overplot'), - plotting means and confidence intervals ('plotCI', 'plotmeans'), - spacing points in an x-y plot so they don't overlap ('space').
Estimation/Multiple Imputation for Mixed Categorical and Continuous Data
Estimation/multiple imputation programs for mixed categorical and continuous data.
Methods for Changepoint Detection
Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean(), cpt.var(), cpt.meanvar() functions should be your first point of call.
Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended
For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane's T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow- Fligner test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Pages's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.
Tools for Multiple Imputation in Multilevel Modeling
Provides tools for multiple imputation of missing data in multilevel modeling. Includes a user-friendly interface to the packages 'pan' and 'jomo', and several functions for visualization, data management and the analysis of multiply imputed data sets.
Circular Visualization
Circular layout is an efficient way for the visualization of huge
amounts of information. Here this package provides an implementation
of circular layout generation in R as well as an enhancement of available
software. The flexibility of the package is based on the usage of low-level
graphics functions such that self-defined high-level graphics can be easily
implemented by users for specific purposes. Together with the seamless
connection between the powerful computational and visual environment in R,
it gives users more convenience and freedom to design figures for
better understanding complex patterns behind multiple dimensional data.
The package is described in Gu et al. 2014
Assigns Colours to Values
Maps one of the viridis colour palettes, or a user-specified palette to values. Viridis colour maps are created by Stéfan van der Walt and Nathaniel Smith, and were set as the default palette for the 'Python' 'Matplotlib' library < https://matplotlib.org/>. Other palettes available in this library have been derived from 'RColorBrewer' < https://CRAN.R-project.org/package=RColorBrewer> and 'colorspace' < https://CRAN.R-project.org/package=colorspace> packages.
Visualizations of Distributions and Uncertainty
Provides primitives for visualizing distributions using 'ggplot2' that are particularly tuned for
visualizing uncertainty in either a frequentist or Bayesian mode. Both analytical distributions (such as
frequentist confidence distributions or Bayesian priors) and distributions represented as samples (such as
bootstrap distributions or Bayesian posterior samples) are easily visualized. Visualization primitives include
but are not limited to: points with multiple uncertainty intervals,
eye plots (Spiegelhalter D., 1999) < https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html>,
density plots, gradient plots, dot plots (Wilkinson L., 1999)