Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 508 packages in 0.01 seconds

evgam — by Ben Youngman, 5 months ago

Generalised Additive Extreme Value Models

Methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) , GAMs see Wood, S.N. (2017) , and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) . Details of how evgam works and various examples are given in Youngman, B.D. (2022) .

tailor — by Max Kuhn, 6 months ago

Iterative Steps for Postprocessing Model Predictions

Postprocessors refine predictions outputted from machine learning models to improve predictive performance or better satisfy distributional limitations. This package introduces 'tailor' objects, which compose iterative adjustments to model predictions. A number of pre-written adjustments are provided with the package, such as calibration. See Lichtenstein, Fischhoff, and Phillips (1977) . Other methods and utilities to compose new adjustments are also included. Tailors are tightly integrated with the 'tidymodels' framework.

hdtg — by Zhenyu Zhang, 5 days ago

Generate Samples from Multivariate Truncated Normal Distributions

Efficient sampling from high-dimensional truncated Gaussian distributions, or multivariate truncated normal (MTN). Techniques include zigzag Hamiltonian Monte Carlo as in Akihiko Nishimura, Zhenyu Zhang and Marc A. Suchard (2024) , and harmonic Monte Carlo in Ari Pakman and Liam Paninski (2014) .

R2BayesX — by Nikolaus Umlauf, a year ago

Estimate Structured Additive Regression Models with 'BayesX'

An R interface to estimate structured additive regression (STAR) models with 'BayesX'.

gamair — by Simon Wood, 6 years ago

Data for 'GAMs: An Introduction with R'

Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.

ContourFunctions — by Collin Erickson, a year ago

Create Contour Plots from Data or a Function

Provides functions for making contour plots. The contour plot can be created from grid data, a function, or a data set. If non-grid data is given, then a Gaussian process is fit to the data and used to create the contour plot.

dbw — by Hiroto Katsumata, a year ago

Doubly Robust Distribution Balancing Weighting Estimation

Implements the doubly robust distribution balancing weighting proposed by Katsumata (2024) , which improves the augmented inverse probability weighting (AIPW) by estimating propensity scores with estimating equations suitable for the pre-specified parameter of interest (e.g., the average treatment effects or the average treatment effects on the treated) and estimating outcome models with the estimated inverse probability weights. It also implements the covariate balancing propensity score proposed by Imai and Ratkovic (2014) and the entropy balancing weighting proposed by Hainmueller (2012) , both of which use covariate balancing conditions in propensity score estimation. The point estimate of the parameter of interest and its uncertainty as well as coefficients for propensity score estimation and outcome regression are produced using the M-estimation. The same functions can be used to estimate average outcomes in missing outcome cases.

freqparcoord — by Norm Matloff, 10 years ago

Novel Methods for Parallel Coordinates

New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.

ctmcmove — by Ephraim Hanks, a year ago

Modeling Animal Movement with Continuous-Time Discrete-Space Markov Chains

Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015) , this allows flexible modeling of movement in response to covariates (or covariate gradients) with model fitting possible within a Poisson GLM framework.

lazyData — by Bill Venables, 9 years ago

A LazyData Facility

Supplies a LazyData facility for packages which have data sets but do not provide LazyData: true. A single function is is included, requireData, which is a drop-in replacement for base::require, but carrying the additional functionality. By default, it suppresses package startup messages as well. See argument 'reallyQuitely'.