Found 508 packages in 0.01 seconds
Generalised Additive Extreme Value Models
Methods for fitting various extreme value distributions with parameters of
generalised additive model (GAM) form are provided. For details of distributions
see Coles, S.G. (2001)
Iterative Steps for Postprocessing Model Predictions
Postprocessors refine predictions outputted from machine
learning models to improve predictive performance or better satisfy
distributional limitations. This package introduces 'tailor' objects,
which compose iterative adjustments to model predictions. A number of
pre-written adjustments are provided with the package, such as
calibration. See Lichtenstein, Fischhoff, and Phillips (1977)
Generate Samples from Multivariate Truncated Normal Distributions
Efficient sampling from high-dimensional truncated Gaussian
distributions, or multivariate truncated normal (MTN). Techniques include
zigzag Hamiltonian Monte Carlo as in Akihiko Nishimura, Zhenyu Zhang and
Marc A. Suchard (2024)
Estimate Structured Additive Regression Models with 'BayesX'
An R interface to estimate structured additive regression (STAR) models with 'BayesX'.
Data for 'GAMs: An Introduction with R'
Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.
Create Contour Plots from Data or a Function
Provides functions for making contour plots. The contour plot can be created from grid data, a function, or a data set. If non-grid data is given, then a Gaussian process is fit to the data and used to create the contour plot.
Doubly Robust Distribution Balancing Weighting Estimation
Implements the doubly robust distribution balancing weighting proposed by Katsumata (2024)
Novel Methods for Parallel Coordinates
New approaches to parallel coordinates plots for multivariate data visualization, including applications to clustering, outlier hunting and regression diagnostics. Includes general functions for multivariate nonparametric density and regression estimation, using parallel computation.
Modeling Animal Movement with Continuous-Time Discrete-Space Markov Chains
Software to facilitates taking movement data in xyt format and pairing it with raster covariates within a continuous time Markov chain (CTMC) framework. As described in Hanks et al. (2015)
A LazyData Facility
Supplies a LazyData facility for packages which have data sets but do not provide LazyData: true. A single function is is included, requireData, which is a drop-in replacement for base::require, but carrying the additional functionality. By default, it suppresses package startup messages as well. See argument 'reallyQuitely'.