Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 507 packages in 0.03 seconds

coenoflex — by David W. Roberts, 9 years ago

Gradient-Based Coenospace Vegetation Simulator

Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.

tvem — by John J. Dziak, 2 years ago

Time-Varying Effect Models

Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) . We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

evgam — by Ben Youngman, 4 months ago

Generalised Additive Extreme Value Models

Methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) , GAMs see Wood, S.N. (2017) , and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) . Details of how evgam works and various examples are given in Youngman, B.D. (2022) .

R2BayesX — by Nikolaus Umlauf, 10 months ago

Estimate Structured Additive Regression Models with 'BayesX'

An R interface to estimate structured additive regression (STAR) models with 'BayesX'.

tailor — by Max Kuhn, 5 months ago

Iterative Steps for Postprocessing Model Predictions

Postprocessors refine predictions outputted from machine learning models to improve predictive performance or better satisfy distributional limitations. This package introduces 'tailor' objects, which compose iterative adjustments to model predictions. A number of pre-written adjustments are provided with the package, such as calibration. See Lichtenstein, Fischhoff, and Phillips (1977) . Other methods and utilities to compose new adjustments are also included. Tailors are tightly integrated with the 'tidymodels' framework.

gamair — by Simon Wood, 6 years ago

Data for 'GAMs: An Introduction with R'

Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.

ContourFunctions — by Collin Erickson, a year ago

Create Contour Plots from Data or a Function

Provides functions for making contour plots. The contour plot can be created from grid data, a function, or a data set. If non-grid data is given, then a Gaussian process is fit to the data and used to create the contour plot.

mrds — by Laura Marshall, 7 months ago

Mark-Recapture Distance Sampling

Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.

MatchIt — by Noah Greifer, 8 months ago

Nonparametric Preprocessing for Parametric Causal Inference

Selects matched samples of the original treated and control groups with similar covariate distributions -- can be used to match exactly on covariates, to match on propensity scores, or perform a variety of other matching procedures. The package also implements a series of recommendations offered in Ho, Imai, King, and Stuart (2007) . (The 'gurobi' package, which is not on CRAN, is optional and comes with an installation of the Gurobi Optimizer, available at < https://www.gurobi.com>.)

bamlss — by Nikolaus Umlauf, a year ago

Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) and the R package in Umlauf, Klein, Simon, Zeileis (2021) .