Examples: visualization, C++, networks, data cleaning, html widgets, ropensci.

Found 476 packages in 0.01 seconds

riskRegression — by Thomas Alexander Gerds, a month ago

Risk Regression Models and Prediction Scores for Survival Analysis with Competing Risks

Implementation of the following methods for event history analysis. Risk regression models for survival endpoints also in the presence of competing risks are fitted using binomial regression based on a time sequence of binary event status variables. A formula interface for the Fine-Gray regression model and an interface for the combination of cause-specific Cox regression models. A toolbox for assessing and comparing performance of risk predictions (risk markers and risk prediction models). Prediction performance is measured by the Brier score and the area under the ROC curve for binary possibly time-dependent outcome. Inverse probability of censoring weighting and pseudo values are used to deal with right censored data. Lists of risk markers and lists of risk models are assessed simultaneously. Cross-validation repeatedly splits the data, trains the risk prediction models on one part of each split and then summarizes and compares the performance across splits.

ggvis — by Hadley Wickham, a year ago

Interactive Grammar of Graphics

An implementation of an interactive grammar of graphics, taking the best parts of 'ggplot2', combining them with the reactive framework of 'shiny' and drawing web graphics using 'vega'.

evgam — by Ben Youngman, 3 years ago

Generalised Additive Extreme Value Models

Methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form are provided. For details of distributions see Coles, S.G. (2001) , GAMs see Wood, S.N. (2017) , and the fitting approach see Wood, S.N., Pya, N. & Safken, B. (2016) . Details of how evgam works and various examples are given in Youngman, B.D. (2022) .

tvem — by John J. Dziak, 2 years ago

Time-Varying Effect Models

Fits time-varying effect models (TVEM). These are a kind of application of varying-coefficient models in the context of longitudinal data, allowing the strength of linear, logistic, or Poisson regression relationships to change over time. These models are described further in Tan, Shiyko, Li, Li & Dierker (2012) . We thank Kaylee Litson, Patricia Berglund, Yajnaseni Chakraborti, and Hanjoo Kim for their valuable help with testing the package and the documentation. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

coenoflex — by David W. Roberts, 9 years ago

Gradient-Based Coenospace Vegetation Simulator

Simulates the composition of samples of vegetation according to gradient-based vegetation theory. Features a flexible algorithm incorporating competition and complex multi-gradient interaction.

ez — by Michael A. Lawrence, 9 years ago

Easy Analysis and Visualization of Factorial Experiments

Facilitates easy analysis of factorial experiments, including purely within-Ss designs (a.k.a. "repeated measures"), purely between-Ss designs, and mixed within-and-between-Ss designs. The functions in this package aim to provide simple, intuitive and consistent specification of data analysis and visualization. Visualization functions also include design visualization for pre-analysis data auditing, and correlation matrix visualization. Finally, this package includes functions for non-parametric analysis, including permutation tests and bootstrap resampling. The bootstrap function obtains predictions either by cell means or by more advanced/powerful mixed effects models, yielding predictions and confidence intervals that may be easily visualized at any level of the experiment's design.

bamlss — by Nikolaus Umlauf, 9 months ago

Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2019) and the R package in Umlauf, Klein, Simon, Zeileis (2021) .

tsDyn — by Matthieu Stigler, 8 months ago

Nonlinear Time Series Models with Regime Switching

Implements nonlinear autoregressive (AR) time series models. For univariate series, a non-parametric approach is available through additive nonlinear AR. Parametric modeling and testing for regime switching dynamics is available when the transition is either direct (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate series, one can estimate a range of TVAR or threshold cointegration TVECM models with two or three regimes. Tests can be conducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).

mrds — by Laura Marshall, 8 months ago

Mark-Recapture Distance Sampling

Animal abundance estimation via conventional, multiple covariate and mark-recapture distance sampling (CDS/MCDS/MRDS). Detection function fitting is performed via maximum likelihood. Also included are diagnostics and plotting for fitted detection functions. Abundance estimation is via a Horvitz-Thompson-like estimator.

gamair — by Simon Wood, 6 years ago

Data for 'GAMs: An Introduction with R'

Data sets and scripts used in the book 'Generalized Additive Models: An Introduction with R', Wood (2006,2017) CRC.