Found 2067 packages in 0.01 seconds
Display and Analyze ROC Curves
Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.
Some Useful Functions for Statistics and Visualization
Offers a range of utilities and functions for everyday programming tasks. 1.Data Manipulation. Such as grouping and merging, column splitting, and character expansion. 2.File Handling. Read and convert files in popular formats. 3.Plotting Assistance. Helpful utilities for generating color palettes, validating color formats, and adding transparency. 4.Statistical Analysis. Includes functions for pairwise comparisons and multiple testing corrections, enabling perform statistical analyses with ease. 5.Graph Plotting, Provides efficient tools for creating doughnut plot and multi-layered doughnut plot; Venn diagrams, including traditional Venn diagrams, upset plots, and flower plots; Simplified functions for creating stacked bar plots, or a box plot with alphabets group for multiple comparison group.
Analysis and Visualization of Droplet Digital PCR in R and on the Web
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.
High Dimensional Data Visualization
It provides materials (i.e. 'serial axes' objects, Andrew's plot, various glyphs for scatter plot) to visualize high dimensional data.
Clustering and Visualizing Distance Matrices
Defines the classes used to explore, cluster and
visualize distance matrices, especially those arising from binary
data. See Abrams and colleagues, 2021,
Visualization using Graph Traversal
Improving graphics by ameliorating order effects, using Eulerian tours
and Hamiltonian decompositions of graphs. References for the methods presented
here are C.B. Hurley and R.W. Oldford (2010)
Analysis and Visualization of Macroevolutionary Dynamics on Phylogenetic Trees
Provides functions for analyzing and visualizing complex macroevolutionary dynamics on phylogenetic trees. It is a companion package to the command line program BAMM (Bayesian Analysis of Macroevolutionary Mixtures) and is entirely oriented towards the analysis, interpretation, and visualization of evolutionary rates. Functionality includes visualization of rate shifts on phylogenies, estimating evolutionary rates through time, comparing posterior distributions of evolutionary rates across clades, comparing diversification models using Bayes factors, and more.
Create Maps and Visualize Data in 2D and 3D
Uses a combination of raytracing and multiple hill shading methods to produce 2D and 3D data visualizations and maps. Includes water detection and layering functions, programmable color palette generation, several built-in textures for hill shading, 2D and 3D plotting options, a built-in path tracer, 'Wavefront' OBJ file export, and the ability to save 3D visualizations to a 3D printable format.
Summarise and Visualise Characteristics of Patients in the OMOP CDM
Summarise and visualise the characteristics of patients in data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model (CDM).
Graph Probability Distributions with User Supplied Parameters and Statistics
Graphs the pdf or pmf and highlights what area or probability is present in user defined locations. Visualize is able to provide lower tail, bounded, upper tail, and two tail calculations. Supports strict and equal to inequalities. Also provided on the graph is the mean and variance of the distribution.