Found 2104 packages in 0.01 seconds
Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences
Tools for multivariate data analysis. Several methods are provided for the analysis (i.e., ordination) of one-table (e.g., principal component analysis, correspondence analysis), two-table (e.g., coinertia analysis, redundancy analysis), three-table (e.g., RLQ analysis) and K-table (e.g., STATIS, multiple coinertia analysis). The philosophy of the package is described in Dray and Dufour (2007)
Multivariate Imputation by Chained Equations
Multiple imputation using Fully Conditional Specification (FCS)
implemented by the MICE algorithm as described in Van Buuren and
Groothuis-Oudshoorn (2011)
Meta-Analysis Package for R
A comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbe, Baujat, bubble, and GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e., mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g., due to phylogenetic relatedness) can also be conducted. An introduction to the package can be found in Viechtbauer (2010)
Manipulate R Data Frames Using SQL
The sqldf() function is typically passed a single argument which is an SQL select statement where the table names are ordinary R data frame names. sqldf() transparently sets up a database, imports the data frames into that database, performs the SQL select or other statement and returns the result using a heuristic to determine which class to assign to each column of the returned data frame. The sqldf() or read.csv.sql() functions can also be used to read filtered files into R even if the original files are larger than R itself can handle. 'RSQLite', 'RH2', 'RMySQL' and 'RPostgreSQL' backends are supported.
Using R to Run 'JAGS'
Providing wrapper functions to implement Bayesian analysis in JAGS. Some major features include monitoring convergence of a MCMC model using Rubin and Gelman Rhat statistics, automatically running a MCMC model till it converges, and implementing parallel processing of a MCMC model for multiple chains.
Multiple Aggregation Prediction Algorithm
Functions and wrappers for using the Multiple Aggregation Prediction Algorithm (MAPA) for time series forecasting. MAPA models and forecasts time series at multiple temporal aggregation levels, thus strengthening and attenuating the various time series components for better holistic estimation of its structure. For details see Kourentzes et al. (2014)
Algorithms for Routing and Solving the Traffic Assignment Problem
Calculation of distances, shortest paths and isochrones on weighted graphs using several variants of Dijkstra algorithm.
Proposed algorithms are unidirectional Dijkstra (Dijkstra, E. W. (1959)
Tools for Multiple Imputation in Multilevel Modeling
Provides tools for multiple imputation of missing data in multilevel modeling. Includes a user-friendly interface to the packages 'pan' and 'jomo', and several functions for visualization, data management and the analysis of multiply imputed data sets.
Various R Programming Tools for Plotting Data
Various R programming tools for plotting data, including: - calculating and plotting locally smoothed summary function as ('bandplot', 'wapply'), - enhanced versions of standard plots ('barplot2', 'boxplot2', 'heatmap.2', 'smartlegend'), - manipulating colors ('col2hex', 'colorpanel', 'redgreen', 'greenred', 'bluered', 'redblue', 'rich.colors'), - calculating and plotting two-dimensional data summaries ('ci2d', 'hist2d'), - enhanced regression diagnostic plots ('lmplot2', 'residplot'), - formula-enabled interface to 'stats::lowess' function ('lowess'), - displaying textual data in plots ('textplot', 'sinkplot'), - plotting dots whose size reflects the relative magnitude of the elements ('balloonplot', 'bubbleplot'), - plotting "Venn" diagrams ('venn'), - displaying Open-Office style plots ('ooplot'), - plotting multiple data on same region, with separate axes ('overplot'), - plotting means and confidence intervals ('plotCI', 'plotmeans'), - spacing points in an x-y plot so they don't overlap ('space').
Regression Modeling Strategies
Regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. 'rms' is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. 'rms' works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.