Found 2265 packages in 1.19 seconds
Procedures for Psychological, Psychometric, and Personality Research
A general purpose toolbox developed originally for personality, psychometric theory and experimental psychology. Functions are primarily for multivariate analysis and scale construction using factor analysis, principal component analysis, cluster analysis and reliability analysis, although others provide basic descriptive statistics. Item Response Theory is done using factor analysis of tetrachoric and polychoric correlations. Functions for analyzing data at multiple levels include within and between group statistics, including correlations and factor analysis. Validation and cross validation of scales developed using basic machine learning algorithms are provided, as are functions for simulating and testing particular item and test structures. Several functions serve as a useful front end for structural equation modeling. Graphical displays of path diagrams, including mediation models, factor analysis and structural equation models are created using basic graphics. Some of the functions are written to support a book on psychometric theory as well as publications in personality research. For more information, see the < https://personality-project.org/r/> web page.
Generic Reproducible Parallel Backend for 'foreach' Loops
Provides functions to perform
reproducible parallel foreach loops, using independent
random streams as generated by L'Ecuyer's combined
multiple-recursive generator [L'Ecuyer (1999),
Some Additional Multiple Imputation Functions, Especially for 'mice'
Contains functions for multiple imputation which
complements existing functionality in R.
In particular, several imputation methods for the
mice package (van Buuren & Groothuis-Oudshoorn, 2011,
Multiple Criteria Optimization Algorithms and Related Functions
A collection of function to solve multiple criteria optimization problems using genetic algorithms (NSGA-II). Also included is a collection of test functions.
Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Sciences
Tools for multivariate data analysis. Several methods are provided for the analysis (i.e., ordination) of one-table (e.g., principal component analysis, correspondence analysis), two-table (e.g., coinertia analysis, redundancy analysis), three-table (e.g., RLQ analysis) and K-table (e.g., STATIS, multiple coinertia analysis). The philosophy of the package is described in Dray and Dufour (2007)
Multivariate Imputation by Chained Equations
Multiple imputation using Fully Conditional Specification (FCS)
implemented by the MICE algorithm as described in Van Buuren and
Groothuis-Oudshoorn (2011)
Meta-Analysis Package for R
A comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbe, Baujat, bubble, and GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e., mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g., due to phylogenetic relatedness) can also be conducted. An introduction to the package can be found in Viechtbauer (2010)
Algorithms for Routing and Solving the Traffic Assignment Problem
Calculation of distances, shortest paths and isochrones on weighted graphs using several variants of Dijkstra algorithm.
Proposed algorithms are unidirectional Dijkstra (Dijkstra, E. W. (1959)
Abstractions for Promise-Based Asynchronous Programming
Provides fundamental abstractions for doing asynchronous programming in R using promises. Asynchronous programming is useful for allowing a single R process to orchestrate multiple tasks in the background while also attending to something else. Semantics are similar to 'JavaScript' promises, but with a syntax that is idiomatic R.
Using R to Run 'JAGS'
Providing wrapper functions to implement Bayesian analysis in JAGS. Some major features include monitoring convergence of a MCMC model using Rubin and Gelman Rhat statistics, automatically running a MCMC model till it converges, and implementing parallel processing of a MCMC model for multiple chains.