Found 10000 packages in 0.02 seconds
RUV-III-C
Variations of Remove Unwanted Variation-III (RUV-III) known as RUV-III-C (RUV-III Complete). RUV-III performs normalisation using negative control variables and replication. RUV-III-C extends this method to cases where the data contains missing values, by applying RUV-III to complete subsets of the data. Originally designed for SWATH-MS proteomics datasets.
Poulos et al. (2020)
Interpolation From C
Simple interpolation methods designed to be used from C
code. Supports constant, linear and spline interpolation. An R
wrapper is included but this package is primarily designed to be
used from C code using 'LinkingTo'. The spline calculations are
classical cubic interpolation, e.g., Forsythe, Malcolm and Moler
(1977)
Integration to 'Apache' 'Arrow'
'Apache' 'Arrow' < https://arrow.apache.org/> is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. This package provides an interface to the 'Arrow C++' library.
Approximate String Matching, Fuzzy Text Search, and String Distance Functions
Implements an approximate string matching version of R's native
'match' function. Also offers fuzzy text search based on various string
distance measures. Can calculate various string distances based on edits
(Damerau-Levenshtein, Hamming, Levenshtein, optimal sting alignment), qgrams (q-
gram, cosine, jaccard distance) or heuristic metrics (Jaro, Jaro-Winkler). An
implementation of soundex is provided as well. Distances can be computed between
character vectors while taking proper care of encoding or between integer
vectors representing generic sequences. This package is built for speed and
runs in parallel by using 'openMP'. An API for C or C++ is exposed as well.
Reference: MPJ van der Loo (2014)
Solvers for Initial Value Problems of Differential Equations ('ODE', 'DAE', 'DDE')
Functions that solve initial value problems of a system of first-order ordinary differential equations ('ODE'), of partial differential equations ('PDE'), of differential algebraic equations ('DAE'), and of delay differential equations. The functions provide an interface to the FORTRAN functions 'lsoda', 'lsodar', 'lsode', 'lsodes' of the 'ODEPACK' collection, to the FORTRAN functions 'dvode', 'zvode' and 'daspk' and a C-implementation of solvers of the 'Runge-Kutta' family with fixed or variable time steps. The package contains routines designed for solving 'ODEs' resulting from 1-D, 2-D and 3-D partial differential equations ('PDE') that have been converted to 'ODEs' by numerical differencing.
C-Statistics for Risk Prediction Models with Censored Survival Data
Performs inference for C of risk prediction models with censored survival data, using the method proposed by Uno et al. (2011)
Multiple Precision Arithmetic
Multiple Precision Arithmetic (big integers and rationals, prime number tests, matrix computation), "arithmetic without limitations" using the C library GMP (GNU Multiple Precision Arithmetic).
C/C++ Source Code to Trigger Address and Undefined Behaviour Sanitizers
Recent gcc and clang compiler versions provide functionality to test for memory violations and other undefined behaviour; this is often referred to as "Address Sanitizer" (or 'ASAN') and "Undefined Behaviour Sanitizer" ('UBSAN'). The Writing R Extension manual describes this in some detail in Section 4.3 title "Checking Memory Access". This feature has to be enabled in the corresponding binary, eg in R, which is somewhat involved as it also required a current compiler toolchain which is not yet widely available, or in the case of Windows, not available at all (via the common Rtools mechanism). As an alternative, pre-built Docker containers such as the Rocker container 'r-devel-san' or the multi-purpose container 'r-debug' can be used. This package then provides a means of testing the compiler setup as the known code failures provides in the sample code here should be detected correctly, whereas a default build of R will let the package pass. The code samples are based on the examples from the Address Sanitizer Wiki at < https://github.com/google/sanitizers/wiki>.
Markov Chain Monte Carlo (MCMC) Package
Contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library Version 1.0.3. All models return 'coda' mcmc objects that can then be summarized using the 'coda' package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
A Collection of Efficient and Extremely Fast R Functions
A collection of fast (utility) functions for data analysis. Column and row wise means, medians, variances, minimums, maximums, many t, F and G-square tests, many regressions (normal, logistic, Poisson), are some of the many fast functions. References: a) Tsagris M., Papadakis M. (2018). Taking R to its limits: 70+ tips. PeerJ Preprints 6:e26605v1